便攜式測(cè)樹(shù)儀的研制及應(yīng)用研究
本文選題:測(cè)樹(shù)儀 + CMOS; 參考:《北京林業(yè)大學(xué)》2016年博士論文
【摘要】:在森林資源調(diào)查中需要調(diào)查林分因子,從而了解森林資源的數(shù)量與質(zhì)量,以進(jìn)行林業(yè)規(guī)劃、設(shè)計(jì)和經(jīng)營(yíng)。森林資源調(diào)查是一項(xiàng)費(fèi)時(shí)費(fèi)力的工作,使用傳統(tǒng)測(cè)量工具需要不同儀器來(lái)進(jìn)行測(cè)量,同時(shí)還受地形條件的限制。我國(guó)常用直徑測(cè)量方式為圍尺,但其無(wú)法測(cè)量上部直徑,并且在復(fù)雜環(huán)境下人難以行進(jìn)的地方也難以測(cè)量。測(cè)高儀器主要為布魯萊斯測(cè)高器,需測(cè)量水平距,受地形條件限制大,誤差較大。為快速精確進(jìn)行林木測(cè)量,開(kāi)發(fā)設(shè)計(jì)了便攜式數(shù)字化智能測(cè)樹(shù)儀—Mini測(cè)樹(shù)儀。儀器由STM32F103VET6單片機(jī)、ov9655傳感器、LIS331DLTR傾角傳感器、鍵盤、LTTD240320022-L3-TF顯示屏模塊及其相關(guān)電路模塊等構(gòu)成。采用相位原理測(cè)距,測(cè)距的平均誤差為0.047m。在徑高同測(cè)模式下,利用攝像頭和CMOS傳感器對(duì)圖像進(jìn)行處理,實(shí)現(xiàn)樹(shù)徑的自動(dòng)識(shí)別,再利用所測(cè)距離和傾角,實(shí)現(xiàn)高度、直徑同步測(cè)量。另外儀器還有測(cè)徑模式、測(cè)高模式、測(cè)距模式、傾角測(cè)量模式、面積計(jì)算模式。將C言語(yǔ)編寫的內(nèi)置代碼燒入單片機(jī)中,實(shí)現(xiàn)了各種測(cè)量,再配合后處理軟件,實(shí)現(xiàn)蓄積計(jì)算、林木分布圖出圖以及競(jìng)爭(zhēng)指數(shù)的計(jì)算等功能,使得內(nèi)外業(yè)一體化。通過(guò)在北京的奧林匹克森林公園、鷲峰以及福建省連城縣朋口鎮(zhèn)進(jìn)行了應(yīng)用和精度驗(yàn)證,本研究主要內(nèi)容和成果如下:(1)實(shí)現(xiàn)樹(shù)木直徑的自動(dòng)判別和測(cè)量直徑自動(dòng)測(cè)量方面通過(guò)攝像頭和CMOS傳感器獲得圖像,經(jīng)灰度轉(zhuǎn)換后,使用窗口大小為5的高斯逆波器進(jìn)行平滑、非極大值剔除、雙閥值的邊緣連接等一系列Canny算法,提取邊緣。在提取的邊緣圖像基礎(chǔ)上,設(shè)計(jì)了樹(shù)木直徑自動(dòng)提取算法,再通過(guò)焦距、物距、像距和像素大小之間的關(guān)系計(jì)算出樹(shù)干直徑。選擇了不同樹(shù)木進(jìn)行驗(yàn)證,實(shí)驗(yàn)結(jié)果表明樹(shù)干識(shí)別的精度為87.9%,樹(shù)徑測(cè)量的自動(dòng)化程度高,所測(cè)樹(shù)干直徑值一半以上誤差在5%以內(nèi),大部分測(cè)量數(shù)據(jù)符合森林資源調(diào)查需求。在自動(dòng)識(shí)別與測(cè)量的基礎(chǔ)上加入手動(dòng)調(diào)節(jié)功能,對(duì)識(shí)別效果不好的進(jìn)行調(diào)節(jié)從而提高樹(shù)木直徑測(cè)量的精度。本儀器解決了給定高度處的直徑測(cè)量,即實(shí)現(xiàn)樹(shù)高、直徑同步測(cè)量,特別是胸徑地測(cè)量。徑高同步測(cè)量主要通過(guò)激光測(cè)距傳感器、傾角傳感器和樹(shù)徑測(cè)量功能來(lái)實(shí)現(xiàn)。對(duì)上部直徑進(jìn)行測(cè)量驗(yàn)證,對(duì)于高20m以上的樹(shù),Mini測(cè)樹(shù)儀的誤差從高度上說(shuō),隨著樹(shù)高的增加而增加,1-5m處最小誤差為0.37cm,5-10m為0.56cm,10-15m為0.58cm,15-20m為0.58cm,20m以上為0.83cm。而從距離上看,誤差小的一般在最后兩個(gè)距離段區(qū)間內(nèi)。13m以下樹(shù)木測(cè)量中,Mini測(cè)樹(shù)儀1-2m處最小誤差為0.15cm,2-3m處最小誤差為0.22cm,3-5m為0.46cm,5-8m為0.54cm,8-13m為0.57cm。對(duì)于上部直徑被遮擋的情況,使用削度方程進(jìn)行估算,只需測(cè)量胸徑,然后就可獲得所需高度處的直徑。使用曾偉生(1997)和Mei(2015)的削度方程進(jìn)行了擬合,得到曾偉生的精度高,相對(duì)誤差在9%內(nèi),而Mei的誤差較大。(2)實(shí)現(xiàn)樹(shù)高的快速方便測(cè)量。樹(shù)高測(cè)量方面,基于三角函數(shù)的測(cè)高主要使用測(cè)距儀、傾角傳感器實(shí)現(xiàn)。CMOS傳感器測(cè)高主要由RGB至HIS的轉(zhuǎn)換、樹(shù)干細(xì)化、投影變換、投影重建等步驟實(shí)現(xiàn)。在高度測(cè)量方面,對(duì)于胸高處的測(cè)量,最大誤差為0.012m,平均誤差為1.298×10-3m。對(duì)不同傾角進(jìn)行樹(shù)高測(cè)量,得到:35°-60°之間所測(cè)樹(shù)高相對(duì)誤差幾乎都在5%以內(nèi)。大于60°和小于35°的誤差較大,60°以上測(cè)量的平均相對(duì)誤差為10.43%,35°-60°的相對(duì)誤差為2.53%,0°-35°的相對(duì)誤差為5.65%,可知在35°-60°間測(cè)量樹(shù)高能準(zhǔn)確的測(cè)出樹(shù)高。(3)實(shí)現(xiàn)林地和林分的各種測(cè)量由Mini測(cè)樹(shù)儀的各種功能實(shí)現(xiàn)冠幅測(cè)量、立木體積測(cè)量、郁閉度測(cè)量、數(shù)字角規(guī)測(cè)量、圓形樣地測(cè)量、中心樹(shù)N邊行樣地法測(cè)量、競(jìng)爭(zhēng)指標(biāo)測(cè)量等。其中數(shù)字角規(guī)測(cè)量實(shí)現(xiàn)了林分蓄積、株數(shù)密度測(cè)量等。在林地和林分因子測(cè)量方面,對(duì)于冠幅的測(cè)量,將Mini測(cè)樹(shù)儀和皮尺測(cè)量值作對(duì)比,兩者的絕對(duì)誤差最大的為0.494m,RMSE為0.283m,精度為96.6%。立木體積測(cè)量,一共測(cè)量了82棵樹(shù)的立木體積,Mini測(cè)樹(shù)儀與卡尺所測(cè)最大誤差為13.34%。數(shù)字角規(guī)測(cè)量方面,人工林的精度高,其中第五塊樣地4.8系數(shù)精度最大,比實(shí)際多了25棵,相對(duì)誤差為1.7%。其次為第一樣地的系數(shù)1,相對(duì)誤差為3.7%,其他誤差都在10%以上。而天然林更復(fù)雜,內(nèi)部情況不一,誤差在20%-40%間,誤差高。數(shù)字角規(guī)的蓄積測(cè)量絕對(duì)誤差最大值為19.02m3,最小誤差為1.19m3。
[Abstract]:Forest Resource Survey needs to be investigated in order to understand the quantity and quality of forest resources so as to carry out forestry planning, design and management. Forest resource investigation is a time-consuming and laborious work. The use of traditional measuring tools is required by different instruments to measure and be restricted by the terrain conditions. But it can't measure the upper diameter, and it is difficult to measure the place where people can't walk in the complex environment. The height measuring instrument is mainly the Blus altimetry. It needs to measure the horizontal distance, the terrain conditions are limited and the error is large. The portable digital intelligent tree measuring instrument, Mini, is developed and designed for fast and accurate forest tree measurement. The instrument is composed of STM32F103VET6 single chip, OV9655 sensor, LIS331DLTR tilt sensor, keyboard, LTTD240320022-L3-TF display module and its related circuit modules. The average error of distance measurement is 0.047m. in the same measurement mode of height and height, and the image is processed by using the camera and CMOS sensor. The height and diameter of the tree are automatically identified, and the height and diameter are synchronized. In addition, the diameter measurement mode, the height measurement mode, the distance measurement mode, the angle measurement mode and the area calculation mode are used. The built-in code compiled by the C language is burned into the single chip microcomputer, and the measurement is realized, and the post processing software is combined with the storage calculation, and forest calculation is realized. The functions of the wood distribution map and the calculation of the competition index make the internal and external integration. The main contents and results of this study are as follows: (1) the automatic measurement of the diameter of trees and the measurement of the diameter of the tree are realized by the application and precision verification of the jiukou town in Beijing's Olympic, Jiufeng and Liancheng County of Fujian province. The image is obtained through the camera and CMOS sensor. After the gray scale conversion, a series of Canny algorithms, such as the Gauss inverse wave device with the size of 5, are used for smoothing, non maximum elimination and double threshold edge connection, and a series of Canny algorithms are used to extract the edges. The relationship between distance and pixel size is calculated. Different trees are selected to verify the tree trunk. The experimental results show that the accuracy of tree trunk recognition is 87.9%, the automation of tree diameter measurement is high and the diameter of tree trunk is less than 5%. Most of the measured data conform to the demand of forest resources investigation. On the basis of the manual adjustment function, the accuracy of the measurement of tree diameter is improved by adjusting the poor recognition effect. The instrument solves the measurement of diameter at a given height, that is, the height of the tree, the measurement of diameter synchronously, especially the diameter of the chest. The diameter height synchronization measurement is mainly through the laser range sensor, the tilt sensor and the tree diameter. Measure the function to realize. To measure the upper diameter, for the tree above 20m, the error of the Mini tree measuring instrument is from height, with the increase of tree height, the minimum error of 1-5m is 0.37cm, 5-10m is 0.56cm, 10-15m is 0.58cm, 15-20m is 0.58cm, 20m above is 0.83cm. and the small error is generally in the last two In the measurement of trees below.13m in the range section, the minimum error of the Mini tree measuring instrument at 1-2m is 0.15cm, the minimum error at 2-3m is 0.22cm, 3-5M is 0.46cm, and 5-8m is 0.54cm. The 8-13m is the case of the upper diameter of the 0.57cm., using the sharpening equation to estimate only the diameter of the chest, then the diameter of the required height is obtained. Used once. The sharpening equation of Weisheng (1997) and Mei (2015) is fitted, and the accuracy of Ceng Weisheng is high, the relative error is within 9%, and the error of Mei is larger. (2) the rapid and convenient measurement of tree height. The height measurement of the tree is mainly based on the trigonometric function, and the tilt sensor realizes the conversion of the.CMOS sensor mainly from RGB to HIS. In the height measurement, the maximum error is 0.012m, the average error is 1.298 x 10-3m. for the tree height measurement of different dip angles, and the relative error between 35 degrees -60 degrees is almost 5%. The error is greater than 60 and less than 35 degrees, and the error is larger, 60 degrees. The average relative error of the above measurement is 10.43%, the relative error of 35 degree -60 degree is 2.53% and the relative error of 0 degree -35 degree is 5.65%. It is known that the high energy and accurate tree height of the tree is measured between 35 degrees -60 degrees. (3) the various functions of the woodland and forest are measured by various functions of the Mini tree measuring instrument, the volume measurement of the tree, the measurement of the canopy density and the digital angle. Measurement, circular sample land measurement, Center tree N edge sampling method measurement, competition index measurement, etc. in which the digital angle gauge realizes the stand accumulation, plant number density measurement and so on. In the forest and stand factor measurement, the measurement of the crown width, the Mini tree meter and the measuring value of the ruler are compared, the absolute error of the two is 0.494m, RMSE For 0.283m, a total of 82 trees was measured by 96.6%. volume measurement. The maximum error of 82 trees was measured. The maximum error measured by the Mini tree meter and caliper was the 13.34%. digital angle gauge. The accuracy of the plantation was high, of which the 4.8 coefficients of the fifth plots were the largest, and 25 were more than the actual, and the relative error was the second factor of the second coefficient 1. The error is 3.7% and the other errors are above 10%. While the natural forest is more complex, the internal situation is different, the error is in the 20%-40%, the error is high. The maximum error of the digital angle gauge is 19.02m3, and the minimum error is 1.19m3.
【學(xué)位授予單位】:北京林業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:S758.7
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 許春菊,李延星,王琳;對(duì)提高森林資源調(diào)查質(zhì)量的研究[J];林業(yè)勘查設(shè)計(jì);2000年04期
2 何健,陶汝秀;麗江森林資源調(diào)查與發(fā)展規(guī)劃[J];林業(yè)科技通訊;2001年08期
3 朱勝利;國(guó)外森林資源調(diào)查監(jiān)測(cè)的現(xiàn)狀和未來(lái)發(fā)展特點(diǎn)[J];林業(yè)資源管理;2001年02期
4 楊曉紅;《森林資源調(diào)查與規(guī)劃》課程內(nèi)容探討[J];北京農(nóng)學(xué)院學(xué)報(bào);2001年04期
5 聶祥永,張敏;關(guān)于實(shí)現(xiàn)森林資源調(diào)查工作全程信息化問(wèn)題的探討[J];林業(yè)資源管理;2002年03期
6 方向文,蔣志榮;遙感在森林資源調(diào)查中的應(yīng)用動(dòng)態(tài)綜述[J];甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào);2003年03期
7 權(quán)志長(zhǎng);在全省森林資源調(diào)查工作會(huì)議上的講話[J];陜西林業(yè);2004年02期
8 孫承騫;加強(qiáng)領(lǐng)導(dǎo) 狠抓落實(shí) 全面完成森林資源調(diào)查任務(wù)——在全省森林資源調(diào)查工作會(huì)議上的講話[J];陜西林業(yè);2004年02期
9 魏強(qiáng),李愛(ài)民;“3S”技術(shù)在森林資源調(diào)查中的應(yīng)用探討[J];內(nèi)蒙古林業(yè)調(diào)查設(shè)計(jì);2004年03期
10 羅揚(yáng),朱軍,王志民,傅俏燕,陸登槐;中巴資源衛(wèi)星數(shù)據(jù)在貴州森林資源調(diào)查中的應(yīng)用[J];南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年02期
相關(guān)會(huì)議論文 前5條
1 陳春葉;;3S技術(shù)在小隴山森林資源調(diào)查中的應(yīng)用[A];第二屆中國(guó)林業(yè)學(xué)術(shù)大會(huì)——S12 現(xiàn)代林業(yè)技術(shù)裝備創(chuàng)新發(fā)展論文集[C];2009年
2 王志民;傅俏燕;陸登槐;羅揚(yáng);朱軍;;中巴地球資源衛(wèi)星在貴州省森林資源調(diào)查的應(yīng)用研究[A];全國(guó)國(guó)土資源與環(huán)境遙感技術(shù)應(yīng)用交流會(huì)論文文集[C];2004年
3 李明陽(yáng);劉敏;劉米蘭;;森林調(diào)查因子的空間自相關(guān)性與空間平衡抽樣[A];第二屆中國(guó)林業(yè)學(xué)術(shù)大會(huì)——S3 森林經(jīng)理與林業(yè)信息化的新使命論文集[C];2009年
4 趙驚奇;趙春飛;汪澤鵬;張全科;俞立民;竇建德;;森林資源規(guī)劃設(shè)計(jì)調(diào)查模式[A];寧夏林學(xué)會(huì)第二屆林業(yè)優(yōu)秀學(xué)術(shù)論文集[C];2011年
5 車騰騰;吳春爭(zhēng);;“3S”技術(shù)在精準(zhǔn)林業(yè)中的應(yīng)用[A];第九屆中國(guó)林業(yè)青年學(xué)術(shù)年會(huì)論文摘要集[C];2010年
相關(guān)重要報(bào)紙文章 前10條
1 本報(bào)記者 朱邪;用數(shù)表夯實(shí)科學(xué)經(jīng)營(yíng)森林基礎(chǔ)[N];貴州日?qǐng)?bào);2012年
2 陳萬(wàn)吉 唐致霞;永靖縣《森林資源調(diào)查報(bào)告》通過(guò)審定[N];民族日?qǐng)?bào);2011年
3 劉少雄邋藍(lán)芳 林維彬;通過(guò)省級(jí)驗(yàn)收[N];閩西日?qǐng)?bào);2007年
4 記者 劉曉雷邋實(shí)習(xí)生 李沛;確保調(diào)查工作順利進(jìn)行[N];平頂山日?qǐng)?bào);2007年
5 州林宣;黔西南州第三次森林資源調(diào)查成果[N];黔西南日?qǐng)?bào);2008年
6 林辦;我省三年內(nèi)完成森林資源調(diào)查[N];云南科技報(bào);2005年
7 孫穎;數(shù)字林業(yè)利器[N];計(jì)算機(jī)世界;2006年
8 曹小軍;全市森林資源二類調(diào)查成果通過(guò)評(píng)審[N];商洛日?qǐng)?bào);2009年
9 凌純階;踏遍八桂 綠滿青山[N];中國(guó)綠色時(shí)報(bào);2006年
10 劉德慶;激光光尺影像測(cè)樹(shù)系統(tǒng)研制成功[N];中國(guó)綠色時(shí)報(bào);2013年
相關(guān)博士學(xué)位論文 前6條
1 陳金星;便攜式測(cè)樹(shù)儀的研制及應(yīng)用研究[D];北京林業(yè)大學(xué);2016年
2 閆飛;森林資源調(diào)查技術(shù)與方法研究[D];北京林業(yè)大學(xué);2014年
3 高祥;森林資源調(diào)查監(jiān)測(cè)信息化技術(shù)方法研究[D];北京林業(yè)大學(xué);2015年
4 尹艷豹;基于機(jī)載激光雷達(dá)測(cè)量的森林資源調(diào)查因子聯(lián)立估計(jì)研究[D];中國(guó)林業(yè)科學(xué)研究院;2010年
5 林國(guó)忠;森林資源二類調(diào)查方法的改進(jìn)及監(jiān)測(cè)體系研究[D];南京林業(yè)大學(xué);2010年
6 何誠(chéng);森林精準(zhǔn)計(jì)測(cè)關(guān)鍵技術(shù)研究[D];北京林業(yè)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 周宇飛;多專題森林資源調(diào)查數(shù)據(jù)采集系統(tǒng)研究[D];北京林業(yè)大學(xué);2007年
2 高潔;天津市森林資源調(diào)查管理創(chuàng)新性研究[D];山西農(nóng)業(yè)大學(xué);2014年
3 胡戎;森林資源調(diào)查PDA技術(shù)研發(fā)與應(yīng)用研究[D];北京林業(yè)大學(xué);2016年
4 史偉娜;森林資源調(diào)查數(shù)據(jù)管理信息系統(tǒng)的研建[D];北京林業(yè)大學(xué);2009年
5 張艮龍;基于高空間分辯率遙感影像的森林資源調(diào)查小班區(qū)劃[D];西安科技大學(xué);2010年
6 宋連公;林場(chǎng)級(jí)資源調(diào)查數(shù)據(jù)管理系統(tǒng)的研建[D];北京林業(yè)大學(xué);2005年
7 邱金清;基于林業(yè)系統(tǒng)的嵌入式GIS的研發(fā)[D];西安科技大學(xué);2008年
8 劉勇;“3S”技術(shù)在森林資源規(guī)劃設(shè)計(jì)調(diào)查中的應(yīng)用研究[D];西北農(nóng)林科技大學(xué);2008年
9 游曉斌;多遙感信息源在森林資源二類調(diào)查中適用性研究[D];北京林業(yè)大學(xué);2003年
10 郭珊;基于IRS-6的理縣森林資源調(diào)查研究[D];成都理工大學(xué);2010年
,本文編號(hào):1863220
本文鏈接:http://www.lk138.cn/shoufeilunwen/nykjbs/1863220.html