高g值抗沖擊加速度敏感芯片設(shè)計
本文選題:微機(jī)電系統(tǒng) + 高g值。 參考:《沈陽工業(yè)大學(xué)》2017年碩士論文
【摘要】:微機(jī)電系統(tǒng)(MEMS)技術(shù),是一種在集成電路工藝基礎(chǔ)上發(fā)展而來的微半導(dǎo)體結(jié)構(gòu)制造技術(shù),由于具有傳統(tǒng)機(jī)械制造技術(shù)難以超越的巨大優(yōu)勢,自問世以來就備受各方關(guān)注。憑借半導(dǎo)體材料的電學(xué)特性和力學(xué)特性,MEMS傳感器已成為代替機(jī)械式傳感器的最佳選擇;诠璨牧系腗EMS壓阻式加速度敏感芯片,工作原理簡單,制造成本低,工藝成熟,成為微加速度傳感器制造商的主流產(chǎn)品。目前,一般的加速度敏感芯片主要采用懸臂梁和質(zhì)量塊結(jié)合的結(jié)構(gòu),這種結(jié)構(gòu)雖然結(jié)構(gòu)簡單、運(yùn)行穩(wěn)定,但在高g值條件下,卻存在著性能方面的嚴(yán)重缺陷,難以適應(yīng)較復(fù)雜的武器應(yīng)用環(huán)境。這也使得武器關(guān)鍵部位性能水平提升受到限制。為使MEMS壓阻式加速度敏感芯片能夠適應(yīng)高沖擊過載環(huán)境,提升微傳感器的整體性能,現(xiàn)在對普通加速度芯片結(jié)構(gòu)進(jìn)行改造,設(shè)計出一種帶有微梁的加速度敏感芯片結(jié)構(gòu)。該結(jié)構(gòu)解決了芯片靈敏度與固有頻率之間的矛盾,具有較高的抗過載能力。通過結(jié)構(gòu)優(yōu)化,采用刻蝕凹槽的方式解決了芯片結(jié)構(gòu)的交叉耦合問題。在滿量程100000g條件下,經(jīng)過優(yōu)化分析,芯片在1mA恒流源供電時的電壓輸出為21.42m V,固有頻率為1.025MHz,最大交叉耦合為4.24%,芯片能夠承受至少650000g的加速度沖擊。在以往芯片結(jié)構(gòu)優(yōu)化方式的基礎(chǔ)上,提出了兩種結(jié)構(gòu)優(yōu)化方式。通過這兩種方式,確定了芯片結(jié)構(gòu)的具體參數(shù),選出最佳的芯片結(jié)構(gòu),并給出其版圖與工藝過程。
[Abstract]:Micro-electromechanical system (MEMS) technology is a kind of microsemiconductor structure manufacturing technology developed on the basis of integrated circuit technology. Because of its great advantage that traditional mechanical manufacturing technology is difficult to surpass, it has attracted much attention since it came out. MEMS sensors, based on the electrical and mechanical properties of semiconductor materials, have become the best alternative to mechanical sensors. The MEMS piezoresistive accelerometer chip based on silicon material has the advantages of simple working principle, low manufacturing cost and mature process, so it has become the mainstream product of micro accelerometer manufacturer. At present, the general accelerometer chip mainly adopts the structure of cantilever beam and mass block. Although this kind of structure is simple and stable, it has serious defects in performance under the condition of high g value. It is difficult to adapt to the complicated weapon application environment. This also limits the performance level of key parts of the weapon. In order to make the MEMS piezoresistive accelerometer chip adapt to the environment of high impact overload and improve the overall performance of the microsensor, the structure of the ordinary accelerometer chip is modified and a acceleration-sensitive chip structure with microbeam is designed. The structure solves the contradiction between the sensitivity and the natural frequency of the chip, and has a high resistance to overload. The cross-coupling problem of chip structure is solved by etching grooves through structure optimization. Under the condition of full range 100000g, the output voltage of the chip is 21.42m V, the natural frequency is 1.025 MHz, the maximum cross-coupling is 4.24 g, and the chip can withstand at least 650000g acceleration shock. On the basis of the previous chip structure optimization, two kinds of structure optimization methods are proposed. Through these two methods, the specific parameters of the chip structure are determined, the optimum chip structure is selected, and the layout and process are given.
【學(xué)位授予單位】:沈陽工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN402;TP212
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張偉;陸躍明;王光慶;;L型壓電振動能量采集器的有限元分析與特性仿真[J];材料科學(xué)與工程學(xué)報;2016年06期
2 曹麗曼;;壓電式加速度傳感器振動測量應(yīng)用研究[J];自動化與儀器儀表;2015年07期
3 陶永康;劉云峰;董景新;;一種電容式高量程微機(jī)械加速度計的設(shè)計分析[J];兵工學(xué)報;2014年11期
4 郭興軍;李朋偉;張文棟;胡杰;李剛;;基于電容式MEMS器件的靜電斥力驅(qū)動研究[J];儀器儀表學(xué)報;2014年08期
5 鄭志霞;馮勇建;;MEMS接觸電容式高溫壓力傳感器的溫度效應(yīng)[J];電子測量與儀器學(xué)報;2013年12期
6 胡星星;滕云田;謝凡;王喜珍;李彩華;王曉美;;基于MEMS傳感器的速度型地震計技術(shù)研究[J];地球物理學(xué)進(jìn)展;2013年01期
7 于景玲;范錦彪;;三軸高g值加速度傳感器的橫向效應(yīng)研究[J];傳感器世界;2012年06期
8 張運(yùn)奎;崔峰;萬鎮(zhèn);劉武;張衛(wèi)平;;非硅MEMS電容式微加速度計的測控電路設(shè)計[J];傳感器與微系統(tǒng);2012年02期
9 王淑華;;MEMS傳感器現(xiàn)狀及應(yīng)用[J];微納電子技術(shù);2011年08期
10 趙銳;石云波;唐軍;劉俊;;MEMS面內(nèi)大量程加速度傳感器設(shè)計與分析[J];傳感技術(shù)學(xué)報;2011年08期
,本文編號:1918135
本文鏈接:http://www.lk138.cn/kejilunwen/zidonghuakongzhilunwen/1918135.html