稠油與非凝析氣體系高溫高壓PVT特性研究
本文選題:稠油 + 非凝析氣; 參考:《東北石油大學(xué)》2015年碩士論文
【摘要】:稠油粘度高、流動性能差,常規(guī)方法開采效果不理想,因此,多元熱流體吞吐等熱采方法成為目前稠油開采的主要方法。為了改善開采效果,可以注入CO2、N2或煙道氣等非凝析氣體來擴(kuò)大油藏加熱范圍、改善排水效果和采油效果。隨著油藏溫度、壓力和流體飽和度不斷變化,非凝析氣與稠油體系的PVT特性也不斷發(fā)生變化,而這些特性參數(shù)對研究非凝析氣改善稠油開采機(jī)理、優(yōu)化蒸汽與氣體復(fù)合開采的注采參數(shù),以及油藏?cái)?shù)值模擬過程中的PVT擬合都非常重要。為此,本文采用渤海油田秦皇島33-1南油田稠油樣品,通過高溫高壓PVT實(shí)驗(yàn),測定稠油與非凝析氣體系的PVT特性參數(shù),分析溫度、壓力、氣體類型對PVT特性的影響規(guī)律,并結(jié)合界面張力實(shí)驗(yàn)研究稠油與非凝析氣相互作用的微觀機(jī)理,同時以CO2為代表,通過體積轉(zhuǎn)換的Peng-Robinson狀態(tài)方程(PR EOS)與修正的α函數(shù)相結(jié)合,研究了非凝析氣和稠油體系在高溫高壓下相態(tài)特性。最后,進(jìn)行物理驅(qū)替模擬實(shí)驗(yàn),通過驅(qū)油效率的分析,驗(yàn)證非凝析氣與稠油體系的PVT高壓物性規(guī)律的有效性。開展高溫高壓PVT物性實(shí)驗(yàn)并綜合分析后可以知道,CO2在秦皇島33-1南油田稠油中具有更高的溶解度,降粘效果明顯,降粘率高達(dá)86%,而N2的降粘率為19.8%,煙道氣為33.8%;CO2降低密度的效果也比較明顯,最高降低幅度且為8.48%,比N2的2.31%高了三倍多,而煙道氣為2.97%,更接近于N2;整體來說,溫度對密度和體積系數(shù)的影響相對于溶解氣的影響要小很多;CO2增加體積系數(shù)幅度最大為9.85%,而N2僅為2.62%,煙道氣大值為3.84%,同樣更接近于N2對稠油的作用效果。非凝析氣與稠油體系的降粘機(jī)理主要是氣泡降粘、稀釋降粘、對膠體結(jié)構(gòu)的破壞以及對界面張力的影響。非凝析氣與稠油的界面張力受溫度影響不大,主要受溶解氣的的影響;CO2降低界面張力的幅度為60%~70%要明顯大于N2,從而導(dǎo)致CO2在稠油中有很高的溶解度。非凝析氣與稠油體系的相態(tài)特性研究表明將稠油看做六擬組分時既能夠準(zhǔn)確的預(yù)測飽和壓力,又能夠精確預(yù)測膨脹系數(shù)。
[Abstract]:The viscosity of heavy oil is high, the flow performance is poor, and the recovery effect of conventional method is not ideal. Therefore, multicomponent thermal fluid huff and puff are the main methods of heavy oil recovery at present. In order to improve the recovery efficiency, the non-condensate gas such as CO _ 2N _ 2 or flue gas can be injected to expand the heating range of the reservoir and improve the drainage efficiency and oil production efficiency. With the change of reservoir temperature, pressure and fluid saturation, the PVT characteristics of non-condensate gas and heavy oil system change continuously, and these parameters can improve the recovery mechanism of heavy oil by studying non-condensate gas. It is very important to optimize the injection-production parameters of steam and gas complex production and the PVT fitting in reservoir numerical simulation. In this paper, the heavy oil samples of Qinhuangdao 33-1 South Oilfield in Bohai Oilfield are used to determine the PVT characteristic parameters of heavy oil and non-condensate gas system by high-temperature and high-pressure PVT experiment, and the influence of temperature, pressure and gas type on PVT characteristics is analyzed. The microscopic mechanism of the interaction between heavy oil and non-condensate gas is studied by the interfacial tension experiment. CO2 is taken as the representative, and the modified 偽 function is combined with the Peng-Robinson equation of state for volume conversion. The phase behavior of non condensate gas and heavy oil system under high temperature and high pressure was studied. Finally, physical displacement simulation experiments were carried out to verify the effectiveness of the PVT high pressure physical properties of non-condensate gas and heavy oil systems through the analysis of oil displacement efficiency. Through the physical property experiment of high temperature and high pressure PVT and comprehensive analysis, we can know that CO 2 has higher solubility in heavy oil of Qinhuangdao 33-1 oil field, and the viscosity reduction effect is obvious. The viscosity reduction rate is as high as 860.The viscosity reduction rate of N2 is 19.8. the effect of reducing density of flue gas by 33.8and CO2 is also obvious, the maximum reduction is 8.48. it is more than three times higher than 2.31% of N2, while the flue gas is 2.97. it is closer to N2; on the whole, The effect of temperature on density and volume coefficient is much smaller than that on dissolved gas. The maximum increase range of volume coefficient of CO2 is 9.85, while that of N2 is only 2.62, and that of flue gas is 3.84, which is also closer to the effect of N2 on heavy oil. The viscosity reduction mechanism of non-condensate gas and heavy oil system is mainly bubble viscosity reduction, dilution viscosity reduction, the destruction of colloid structure and the influence of interfacial tension. The interfacial tension of non-condensate gas and heavy oil is not affected by temperature, but the decrease of interfacial tension of CO _ 2 is more than that of N _ 2 by 70%, which leads to the high solubility of CO2 in heavy oil. The study on phase behavior of non-condensate gas and heavy oil system shows that heavy oil can predict both saturation pressure and expansion coefficient when it is considered as a six-component.
【學(xué)位授予單位】:東北石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TE345
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 龍懷祖;;凝析氣分離的進(jìn)一步探討[J];天然氣工業(yè);1989年05期
2 王洪見;蔣玉雙;馬廣明;;凝析氣平衡冷凝液量計(jì)算[J];石油天然氣學(xué)報(bào)(江漢石油學(xué)院學(xué)報(bào));2006年03期
3 裴柏林;;用累積法測量高溫、高壓下凝析氣的油相與氣相的體積比值[J];石油勘探與開發(fā);1988年03期
4 李廣之;袁子艷;胡斌;鄧天龍;;利用頂空氣技術(shù)判別凝析氣(油)儲層[J];天然氣地球科學(xué);2006年03期
5 張友波;李長俊;劉定智;;凝析氣管線輸送穩(wěn)/瞬態(tài)模擬研究[J];燕山大學(xué)學(xué)報(bào);2007年06期
6 郭揆常;近海凝析氣的管道輸送[J];油氣儲運(yùn);1996年02期
7 劉曰武,劉俊麗,鄭威,吳英明;凝析氣井測試曲線壓力導(dǎo)數(shù)凹陷的研究[J];油氣井測試;1999年01期
8 胥勛元,班興安;多相混輸技術(shù)在英買7凝析氣田群應(yīng)用探討[J];天然氣與石油;2002年03期
9 熊鈺,孫雷,趙明,孫良田,黃全華;非瞬時平衡相態(tài)對凝析氣近井高速流動區(qū)動態(tài)飽和度的影響研究[J];天然氣工業(yè);2003年01期
10 郭揆常;凝析氣管道的混相輸送[J];天然氣工業(yè);2002年02期
相關(guān)會議論文 前1條
1 李玉浩;曹學(xué)文;唱永磊;李開源;趙聯(lián)祁;;海底凝析氣管道泄漏工況分析[A];第十三屆全國水動力學(xué)學(xué)術(shù)會議暨第二十六屆全國水動力學(xué)研討會論文集——E工業(yè)流體力學(xué)[C];2014年
相關(guān)重要報(bào)紙文章 前2條
1 記者 王志良 通訊員 郭俊昌;我國凝析氣處理工藝實(shí)現(xiàn)創(chuàng)新[N];中國石油報(bào);2002年
2 鄭水平;遼河油田16項(xiàng)科技成果通過省級鑒定[N];中國工業(yè)報(bào);2009年
相關(guān)碩士學(xué)位論文 前1條
1 張成君;稠油與非凝析氣體系高溫高壓PVT特性研究[D];東北石油大學(xué);2015年
,本文編號:1879854
本文鏈接:http://www.lk138.cn/kejilunwen/shiyounenyuanlunwen/1879854.html