分輸減壓閥溫降與振動(dòng)規(guī)律及其安全可靠性研究
本文選題:RMG530減壓閥 + 節(jié)流溫降。 參考:《中國石油大學(xué)(華東)》2015年碩士論文
【摘要】:RMG530減壓閥是長輸天然氣分輸站場的大型關(guān)鍵調(diào)壓設(shè)備,天然氣分輸過程中由于節(jié)流效應(yīng)造成減壓閥處溫度驟降,高壓低溫環(huán)境下,天然氣水合物容易在閥內(nèi)析出造成冰堵,同時(shí)冰塊沖擊閥體引起減壓閥劇烈振動(dòng),振動(dòng)易引起閥體疲勞失效。課題針對天然氣分輸過程中存在的節(jié)流溫降、冰堵和振動(dòng)等問題,結(jié)合秦皇島天然氣分輸站的實(shí)際運(yùn)行工況,利用有限元分析軟件,建立RMG530減壓閥閥內(nèi)流體有限元模型,模擬不同工況環(huán)境下天然氣的分輸節(jié)流過程,分析天然氣流速、壓力與溫度變化規(guī)律,比較入口壓力、節(jié)流壓降和環(huán)境溫度等因素對減壓閥節(jié)流溫降過程的影響,并利用分輸站場節(jié)流溫降測試數(shù)據(jù)驗(yàn)證模擬結(jié)果的正確性;為分析低溫下閥體材料的力學(xué)性能,以熱軋與調(diào)質(zhì)狀態(tài)下天然氣分輸減壓閥體用1.6220鑄鋼為研究對象,采用低溫拉伸以及系列沖擊試驗(yàn)方法對其力學(xué)性能隨溫度的變化規(guī)律進(jìn)行了研究,觀察不同溫度下沖擊試樣斷面的形貌,獲得材料的韌脆轉(zhuǎn)變溫度;為分析RMG530減壓閥靜載作用下安全可靠性,考慮電纜加熱對節(jié)流溫降和閥體熱應(yīng)力的影響,分別進(jìn)行了天然氣流場分析,閥體有限元靜力及熱應(yīng)力分析。基于計(jì)算分析結(jié)果,得出了閥內(nèi)流場及熱應(yīng)力分布規(guī)律,分析閥體結(jié)構(gòu)薄弱部位的安全性能。模擬冬季與夏季不同工況下減壓閥的啟停過程,獲得閥體結(jié)構(gòu)在運(yùn)行過程中應(yīng)力與變形情況,分析脈動(dòng)循環(huán)應(yīng)力對減壓閥疲勞破壞的影響,依據(jù)修正獲得的減壓閥材料S-N曲線,計(jì)算減壓閥靜態(tài)疲勞壽命,并運(yùn)用Weibull-Bayes方法對工況條件下分輸減壓閥的安全可靠性進(jìn)行評估分析;最后,為了評估隨機(jī)振動(dòng)載荷下減壓閥的安全可靠性,根據(jù)現(xiàn)場測得的隨機(jī)振動(dòng)載荷對減壓閥進(jìn)行振動(dòng)響應(yīng)分析,獲得響應(yīng)功率譜密度,最后依據(jù)修正獲得的減壓閥材料S-N曲線,應(yīng)用有限元疲勞分析軟件NCode,通過時(shí)域和頻域方法對減壓閥進(jìn)行了隨機(jī)振動(dòng)疲勞分析,計(jì)算閥體關(guān)鍵部位的疲勞壽命。結(jié)果表明:節(jié)流分輸過程閥內(nèi)天然氣流動(dòng)復(fù)雜,呈強(qiáng)湍流特性;閥籠節(jié)流孔內(nèi)流速激增,但壓力、溫度驟降,水合物析出在節(jié)流孔內(nèi)完成;環(huán)境溫度、入口壓力和節(jié)流壓降是影響節(jié)流溫降過程的主要因素,考慮各因素建立的分輸過程析出液態(tài)水合物判斷公式能夠準(zhǔn)確預(yù)判調(diào)壓閥冰堵的發(fā)生;現(xiàn)場實(shí)際注醇量與給出的計(jì)算注醇量吻合,采用給出的計(jì)算公式計(jì)算注醇量能夠有效的防治分輸站場冰堵;隨著溫度的降低,1.6220鑄鋼的屈服強(qiáng)度和抗拉強(qiáng)度顯著提高,斷面伸縮率和伸長率逐漸下降;調(diào)質(zhì)處理明顯改善材料的低溫力學(xué)性能,調(diào)質(zhì)狀態(tài)材料的韌脆轉(zhuǎn)變溫度為-14.46℃,熱軋狀態(tài)材料的韌脆轉(zhuǎn)變溫度為2.76℃。減壓閥結(jié)構(gòu)設(shè)計(jì)較保守,天然氣分輸過程中閥體應(yīng)力、位移響應(yīng)幅值不大,不會(huì)引起共振。減壓閥結(jié)構(gòu)設(shè)計(jì)比較保守,振動(dòng)載荷下最小壽命發(fā)生在進(jìn)口管段到閥座的拐角處,時(shí)域疲勞計(jì)算最小壽命為41.79年,頻域疲勞計(jì)算最小壽命為38.81年。本文的振動(dòng)疲勞計(jì)算結(jié)果可為分輸站場甲醇自控系統(tǒng)的開發(fā)和閥體結(jié)構(gòu)的安全可靠性評估提供依據(jù)。
[Abstract]:RMG530 pressure relief valve is a large key pressure regulating equipment for long distance gas transmission station. Due to throttle effect in natural gas separation process, the temperature of the pressure relief valve is suddenly reduced. Under high pressure and low temperature environment, gas hydrate is easily precipitated in the valve and causes ice plugging. At the same time, the ice rock impact valve leads the pressure relief valve to vibrate, and the vibration easily causes the fatigue of the valve body. In view of the problems of throttle temperature drop, ice blocking and vibration in natural gas separation process, combined with the actual operating conditions of Qinhuangdao natural gas transmission station, the finite element model of the fluid in the RMG530 pressure relief valve is established by the finite element analysis software, and the natural gas flow and throttle process under different conditions are simulated and the natural gas flow is analyzed. The influence of the inlet pressure, the throttle pressure drop and the ambient temperature on the throttle temperature drop process of the pressure relief valve is compared, and the correctness of the simulation results is verified by the test data of the throttle temperature drop of the transmission station, and the mechanical energy of the body material under the low temperature is analyzed and the gas transmission and decompression under the hot rolling and tempering condition is analyzed. 1.6220 cast steel for valve body is used as the research object. The change law of mechanical properties with temperature is studied by low temperature tensile and series of impact tests. The morphology of the impact specimen section at different temperatures is observed and the toughening and brittle transition temperature of the material is obtained. To analyze the safety and reliability of the RMG530 pressure relief valve under static loading, the cable heating is considered. The natural gas flow field analysis, the finite element static and thermal stress analysis of the valve body are carried out on the influence of the throttle temperature drop and the thermal stress of the valve body respectively. Based on the calculation and analysis results, the flow field and the distribution of thermal stress in the valve are obtained, and the safety performance of the weak part of the valve body is analyzed. In order to obtain the stress and deformation of the body structure during the operation, the effect of the pulsating cycle stress on the fatigue failure of the pressure relief valve was analyzed. The static fatigue life of the pressure relief valve was calculated according to the modified S-N curve of the pressure relief valve material, and the safety and reliability of the pressure relief valve under operating conditions was evaluated and analyzed with the Weibull-Bayes method. In order to evaluate the safety and reliability of the pressure relief valve under random vibration load, the response analysis of the pressure relief valve is carried out according to the random vibration load measured in the field. The response power spectrum density is obtained. Finally, the finite element fatigue analysis software NCode is applied to the relief valve material S-N curve obtained. The pressure relief valve is used in time domain and frequency domain method. The fatigue life of the key parts of the valve body is calculated by the random vibration fatigue analysis. The results show that the flow of natural gas in the throttle valve is complicated and has strong turbulent characteristics; the flow velocity in the throttle hole of the valve cage increases sharply, but the pressure, the temperature drop suddenly, the hydrate precipitates in the throttle hole, and the ambient temperature, inlet pressure and throttle pressure drop are the influence throttle. The main factors of the temperature drop process, considering the separation process established by each factor, can accurately predict the ice plugging of the pressure regulating valve; the actual amount of alcohol injection in the field coincides with the calculated amount of alcohol given, and the calculated formula can effectively prevent and control the ice plugging in the transmission station. The yield strength and tensile strength of 1.6220 cast steel increased significantly, the expansion ratio and elongation of the section gradually decreased, and the tempering treatment obviously improved the mechanical properties of the material at low temperature. The toughening and brittle transition temperature of the material was -14.46 C, the ductile and brittle transition temperature of the hot rolled state material was 2.76 C. The structural design of the pressure relief valve was more conservative, and the natural gas was lost. The displacement response amplitude of the valve body is small, and the resonance is not caused. The structural design of the pressure relief valve is conservative. The minimum life of the vibration load occurs at the corner of the inlet pipe to the seat. The minimum life time of the fatigue calculation in the time domain is 41.79 years and the minimum life of the frequency domain fatigue calculation is 38.81 years. The results of the vibration fatigue calculation in this paper can be the transmission station. The basis is provided for the development of the field methanol automatic control system and the safety and reliability evaluation of the valve body structure.
【學(xué)位授予單位】:中國石油大學(xué)(華東)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TE974
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 葛樹才;;測量閥體內(nèi)孔沉割槽直徑的方法[J];機(jī)械制造;1991年04期
2 尹慶平,張健身;閥體對中量具[J];閥門;2001年04期
3 雷軍,王海濤,于永權(quán);閥體開裂的簡易膠補(bǔ)[J];燃料與化工;2004年01期
4 ;圓筒形閥體[J];煤礦機(jī)電;1983年04期
5 劉文秀;;常溫自硬樹脂砂在閥體上的應(yīng)用[J];鑄造技術(shù);1986年02期
6 關(guān)彥波;金煥德;;閥體研磨的簡易裝置[J];機(jī)械工藝師;1991年11期
7 呂鳳海,王玉坤;閥體開裂原因分析[J];金屬熱處理;1999年05期
8 柳鵬旭;;灌裝快速閥體修復(fù)和工裝設(shè)計(jì)方法[J];金屬加工(冷加工);2012年07期
9 ;旋風(fēng)銑閥體沉割槽[J];機(jī)床與液壓;1972年02期
10 ;鑄鋼閥體冒口的設(shè)置[J];機(jī)械工人技術(shù)資料;1975年03期
相關(guān)會(huì)議論文 前9條
1 余康;;一種新型線性可調(diào)式閥體的研發(fā)[A];中國土木工程學(xué)會(huì)燃?xì)夥謺?huì)應(yīng)用專業(yè)委員會(huì)、中國土木工程學(xué)會(huì)燃?xì)夥謺?huì)燃?xì)夤釋I(yè)委員會(huì)2012年會(huì)論文集[C];2012年
2 姜圣翰;王宇翔;張冬林;李曉鐘;;基于熱-結(jié)構(gòu)耦合效應(yīng)的閥體可靠性分析[A];中國核動(dòng)力研究設(shè)計(jì)院科學(xué)技術(shù)年報(bào)(2009)[C];2011年
3 ?;陳鴻;張春良;王連愷;;焊接閥門閥體滲漏的原因及處理[A];“振興吉林老工業(yè)基地——科技工作者的歷史責(zé)任”吉林省第三屆科學(xué)技術(shù)學(xué)術(shù)年會(huì)論文集(上冊)[C];2004年
4 李偉;;工程機(jī)械用進(jìn)口大流量液壓控制閥體試制[A];2008年安徽省科協(xié)年會(huì)機(jī)械工程分年會(huì)論文集[C];2008年
5 曾英華;;滿足EN 298標(biāo)準(zhǔn)最佳閥體控制方案的探討[A];中國土木工程學(xué)會(huì)燃?xì)夥謺?huì)應(yīng)用專業(yè)委員會(huì)、中國土木工程學(xué)會(huì)燃?xì)夥謺?huì)燃?xì)夤釋I(yè)委員會(huì)2012年會(huì)論文集[C];2012年
6 楊文;姚文輝;王雅男;李朋園;李嵩;郭曉龍;王君;;灶具旋轉(zhuǎn)閥體測試儀的設(shè)計(jì)與應(yīng)用[A];中國土木工程學(xué)會(huì)燃?xì)夥謺?huì)應(yīng)用專業(yè)委員會(huì)、中國土木工程學(xué)會(huì)燃?xì)夥謺?huì)燃?xì)夤釋I(yè)委員會(huì)2012年會(huì)論文集[C];2012年
7 黃金督;王仕勤;梅建平;;注水泵閥體彈簧斷裂原因分析[A];2009年全國失效分析學(xué)術(shù)會(huì)議論文集[C];2009年
8 王順洪;;燃?xì)廨啓C(jī)旁路機(jī)構(gòu)閥體結(jié)構(gòu)及工藝改進(jìn)創(chuàng)效益[A];晉冀豫鄂蒙川云貴甘滬湘魯十二省區(qū)市機(jī)械工程學(xué)會(huì)2007年學(xué)術(shù)年會(huì)論文集(山東、四川分冊)[C];2007年
9 劉思沛;張化強(qiáng);羅進(jìn);張海芹;;焦?fàn)t閥體翻板軸密封裝置的改進(jìn)[A];河南省冶金行業(yè)低碳冶金與節(jié)能減排學(xué)術(shù)研討會(huì)論文集[C];2011年
相關(guān)重要報(bào)紙文章 前1條
1 顧桂珍 邱進(jìn)發(fā);事故隱患攔截在物資入庫前[N];中國石化報(bào);2011年
相關(guān)碩士學(xué)位論文 前10條
1 胡紅磊;水平帶法蘭閥體多向模鍛工藝研究[D];燕山大學(xué);2015年
2 王家權(quán);大口徑楔式閘閥結(jié)構(gòu)設(shè)計(jì)與優(yōu)化[D];沈陽大學(xué);2015年
3 榮剛;液壓滑閥內(nèi)部結(jié)構(gòu)變形與流量泄漏研究[D];浙江大學(xué);2015年
4 費(fèi)揚(yáng);新型高參數(shù)減壓閥流動(dòng)特性與高溫高壓強(qiáng)度分析[D];浙江大學(xué);2015年
5 王承洋;閥體搬運(yùn)AGV的設(shè)計(jì)與仿真[D];南昌航空大學(xué);2015年
6 李振興;氣壓式噴火器的研究與分析[D];南京理工大學(xué);2016年
7 周晨;不同角度Y型截止閥閥體的流通性能和強(qiáng)度分析及優(yōu)化[D];蘭州理工大學(xué);2016年
8 翟啟;考慮熱力學(xué)效應(yīng)的高壓閥門結(jié)構(gòu)優(yōu)化研究[D];湖南工業(yè)大學(xué);2016年
9 尤澤廣;分輸減壓閥溫降與振動(dòng)規(guī)律及其安全可靠性研究[D];中國石油大學(xué)(華東);2015年
10 廖清常;大型鑄造不銹鋼閥體失效行為研究[D];華南理工大學(xué);2010年
,本文編號:1876862
本文鏈接:http://www.lk138.cn/kejilunwen/shiyounenyuanlunwen/1876862.html