氯化鈉介質(zhì)中銅復(fù)合緩蝕劑性能及緩蝕機(jī)理研究
發(fā)布時間:2018-05-07 11:02
本文選題:銅 + 緩蝕劑。 參考:《江西理工大學(xué)》2016年碩士論文
【摘要】:本文通過失重實(shí)驗(yàn)、掃描電子顯微鏡、動電位極化曲線檢測、交流阻抗譜測試等手段研究苯并三氮唑(BTA)、三乙醇胺(TEA)和硅酸鈉單獨(dú)使用時對銅在5%氯化鈉溶液中腐蝕行為的影響。在此基礎(chǔ)上,將BTA和TEA、BTA和硅酸鈉組成復(fù)合緩蝕劑,研究總濃度變化和復(fù)配比變化對緩蝕作用的影響規(guī)律。通過正交試驗(yàn)確定BTA、TEA和硅酸鈉三者組成復(fù)合緩蝕劑的較優(yōu)組合配方,并且分析環(huán)境溫度、復(fù)合緩蝕劑總濃度以及浸泡時間對緩蝕作用的影響規(guī)律。研究結(jié)果表明:(1)在含有5%氯化鈉的介質(zhì)中,隨著BTA含量增加,緩蝕效率提高;TEA對銅在5%氯化鈉介質(zhì)中的腐蝕行為沒有抑制作用,銅的腐蝕速率隨著TEA含量增加而逐漸增大;硅酸鈉對銅在5%氯化鈉介質(zhì)中腐蝕行為的影響與硅酸鈉的含量有關(guān),當(dāng)含量低于50mg/L會促進(jìn)銅的腐蝕,含量高于100mg/L則能夠產(chǎn)生緩蝕作用。(2)BTA與TEA、BTA與硅酸鈉之間均產(chǎn)生了協(xié)同作用?倽舛20mg/L,BTA與TEA組成復(fù)合緩蝕劑的較佳復(fù)配比是1:4,此條件下的腐蝕電流密度是2.53×10-6A/cm2,緩蝕效率ηI是70.14%;而在總濃度為50mg/L以及100mg/L時的較佳復(fù)配比是4:1,此條件下的腐蝕電流密度分別是5.2×10-7A/cm2和7.45×10-8A/cm2,對應(yīng)的緩蝕效率ηI分別是93.86%和99.12%。BTA與硅酸鈉組成的復(fù)合緩蝕劑在總濃度為20mg/L、50mg/L以及100mg/L時的較佳復(fù)配比均是4:1,此條件下的腐蝕電流密度分別是2.53×10-6A/cm2、1.04×10-7A/cm2、7.45×10-8A/cm2,對應(yīng)的緩蝕效率ηI分別是70.18%、87.78%、99.13%。(3)BTA、TEA以及硅酸鈉組成復(fù)合緩蝕劑的較優(yōu)組合為BTA50mg/L、硅酸鈉500mg/L和TEA300mg/L。極化曲線數(shù)據(jù)表明,此復(fù)合緩蝕劑能夠同時抑制陽極反應(yīng)和陰極反應(yīng),屬于混合抑制型緩蝕劑。交流阻抗數(shù)據(jù)表明,銅在氯化鈉介質(zhì)中的腐蝕受到電荷傳遞過程和擴(kuò)散過程決定,此復(fù)合緩蝕劑通過在銅表面形成保護(hù)膜,阻礙銅腐蝕過程中的電荷轉(zhuǎn)移過程,電荷傳遞電阻由1161Ω增大到27506Ω,產(chǎn)生保護(hù)作用。(4)綜合考慮使用量以及保護(hù)效果,復(fù)合緩蝕劑C(BTA20mg/L、硅酸鈉300mg/L、TEA20mg/L)既可以滿足使用要求又能夠節(jié)約成本。此復(fù)合緩蝕劑在銅表面的吸附服從Langmuir吸附等溫模型,吸附是一個自發(fā)的過程且物理吸附和化學(xué)吸附同時存在。在28℃~65℃范圍內(nèi),溫度越高,保護(hù)作用越差;在0.2C~C(C代表由BTA20mg/L、硅酸鈉300mg/L、TEA20mg/L組成的復(fù)合緩蝕劑;0.2C代表將C稀釋成0.2倍后的復(fù)合緩蝕劑)范圍內(nèi),隨著復(fù)合緩蝕劑總量增加,銅的腐蝕速率逐漸降低,緩蝕效率則逐漸增加;溫度為35℃,浸泡時間在0.2h~3h范圍內(nèi),極化曲線變化幅度不大,復(fù)合緩蝕劑的性質(zhì)穩(wěn)定,對銅在氯化鈉介質(zhì)中的腐蝕產(chǎn)生保護(hù)作用。
[Abstract]:The effects of benzotriazole BTAA, triethanolamine tea) and sodium silicate on the corrosion behavior of copper in 5% sodium chloride solution were studied by means of weightlessness test, scanning electron microscope, potentiodynamic polarization curve detection and AC impedance spectroscopy. On this basis, the composite corrosion inhibitor composed of BTA, tea BTA and sodium silicate was used to study the effect of the total concentration and the mixture ratio on the corrosion inhibition. The optimum combination formula of BTATEA and sodium silicate was determined by orthogonal test, and the influence of environment temperature, total concentration of composite inhibitor and soaking time on the corrosion inhibition was analyzed. The results show that in the medium containing 5% sodium chloride, the corrosion inhibition efficiency increases with the increase of BTA content. Tea does not inhibit the corrosion behavior of copper in 5% sodium chloride medium. The corrosion rate of copper increases with the increase of TEA content. The effect of sodium silicate on the corrosion behavior of copper in 5% sodium chloride medium is related to the content of sodium silicate. When the content of sodium silicate is lower than 50mg/L, the corrosion of copper will be promoted, and the corrosion inhibition effect can be produced when the content of sodium silicate is higher than that of 100mg/L, and the synergism between TEABTA and sodium silicate can be obtained when the content of sodium silicate is higher than that of 100mg/L. The optimum combination ratio of 20 mg / L BTA and TEA is 1: 4, the corrosion current density is 2.53 脳 10 ~ (-6) A / cm ~ (2), the corrosion inhibition efficiency 畏 _ I is 70.14 and the better ratio is 4: 1 when the total concentration is 50mg/L and 100mg/L, and the corrosion current is dense under this condition. The corrosion inhibition efficiency 畏 I is 93.86% and the ratio of the composite inhibitor composed of 99.12%.BTA and sodium silicate is 20 mg / L 50 mg / L and 100mg/L is 4: 1, respectively. The corrosion current density is 2.53 脳 10-6 A / cm _ 2 1.04 脳 10 ~ (-7) A 路cm ~ (-2) 路cm ~ (2), respectively, and the optimum ratio is 4: 1 at the total concentration of 20 mg / L ~ (50) mg / L ~ (-1) and 100mg/L, respectively. The corrosion current density is 2.53 脳 10 ~ (-6) A / cm ~ (-2) / cm ~ (2), and 7.45 脳 10 ~ (-8) A / cm ~ (-2) 路cm ~ (-2) respectively. The corrosion inhibition efficiency 畏 I is 70.18, 87.78 and 99.133.The optimum combination of BTA 50 mg / L, sodium silicate 500mg/L and tea 300 mg / L is the optimum combination of BTA 50 mg / L, sodium silicate 500mg/L and tea 300 mg / L, respectively. The polarization curve data show that the composite inhibitor can inhibit both anodic and cathodic reactions and is a mixed inhibitor. Ac impedance data show that the corrosion of copper in sodium chloride medium is determined by the charge transfer process and diffusion process. The composite corrosion inhibitor hinders the charge transfer process of copper corrosion by forming a protective film on the surface of copper. The charge transfer resistance is increased from 1161 惟 to 27506 惟, which has protective effect.) considering the usage and protection effect, the composite corrosion inhibitor CnBTA 20mg / L, sodium silicate 300mg / L tea 20mg / L) can meet the requirements and save cost. The adsorption isotherm of the complex corrosion inhibitor on copper surface is from the Langmuir adsorption isotherm model. The adsorption is a spontaneous process and the physical adsorption and the chemical adsorption exist at the same time. In the range of 28 鈩,
本文編號:1856664
本文鏈接:http://www.lk138.cn/kejilunwen/jiagonggongyi/1856664.html
最近更新
教材專著