鈦表面多弧離子鍍沉積TiSiCN涂層的結(jié)構(gòu)及其磨蝕性能研究
本文選題:TiSiCN涂層 切入點:多弧離子鍍 出處:《寧波大學(xué)》2017年碩士論文
【摘要】:鈦合金質(zhì)量輕、強(qiáng)度高、耐海水和海洋大氣腐蝕,被認(rèn)為是在嚴(yán)酷高濕熱的海洋環(huán)境中最具有潛力的使役材料。但鈦合金的耐磨損性能差,為適應(yīng)快速發(fā)展艦艇、深潛器及海工裝備的需求,開發(fā)集耐磨蝕和自潤滑一體化的防護(hù)涂層材料非常迫切。具有超高硬度及優(yōu)異的抗磨損性能的TiSiN涂層和具有優(yōu)異的自潤滑性能Ti_3SiC_2MAX相的材料受到廣泛關(guān)注。本文采用多弧離子鍍技術(shù)通過調(diào)控沉積參數(shù)制備高硬度、減磨耐磨的TiSiCN涂層。在此基礎(chǔ)上,通過調(diào)控沉積偏壓改變沉積過程中的粒子能量,探索制備非晶納米晶與Ti_3SiC_2MAX相的耦合結(jié)構(gòu)的TiSiCN涂層,建立物相結(jié)構(gòu)和磨蝕性能的本構(gòu)關(guān)系,并揭示涂層在海水中的失效機(jī)制。得到如下階段性結(jié)論:1.TiSiCN涂層中包含TiN、TiC和Ti(C,N)納米晶、非晶Si3N4和SiC及少量的非晶碳。2.當(dāng)碳含量為11.9at.%時,TiSiCN涂層表現(xiàn)出最高的硬度(~39.8GPa)和優(yōu)異的抗磨蝕性能。在大氣環(huán)境下,由于涂層中的碳發(fā)生了類石墨化轉(zhuǎn)變及轉(zhuǎn)移致使碳含量為22.2at.%的TiSiCN涂層表現(xiàn)出優(yōu)異的摩擦學(xué)性能。3.在海水中涂層的退化主要是由機(jī)械磨損造成的,而化學(xué)腐蝕對涂層的退化貢獻(xiàn)不大,另外磨損與腐蝕之間的交互作用也是涂層退化的一個重要因素。4.偏壓引起離子能量的變化對TiSiCN涂層的組織和性能影響顯著,其中晶粒尺寸不斷減小、壓應(yīng)力不斷增大,隨著沉積偏壓的增加,涂層中的峰位也逐漸由TiN向TiC偏移。5.沉積偏壓為-100V時,TiSiCN涂層具有非晶納米晶(nc-TiN,TiC,Ti(C,N)/α-Si3N4,SiC)與少量Ti_3SiC_2MAX相的耦合結(jié)構(gòu),此時TiSiCN涂層表現(xiàn)出高硬度、優(yōu)異的抗磨蝕性能。6.涂層結(jié)構(gòu)完整沒有形成貫穿式的裂紋時,保護(hù)電位的存在可以有效的保護(hù)涂層免受電化學(xué)腐蝕,然而當(dāng)海水沿腐蝕通道浸入涂層接觸到基底后,保護(hù)電位的存在則會加速涂層的退化。
[Abstract]:Titanium alloy is considered as the most potential material in the severe and high humid marine environment because of its light weight, high strength and corrosion resistance to sea water and ocean atmosphere. But the wear resistance of titanium alloy is poor, so it is suitable for the rapid development of ships. Requirements for deep submersible vehicles and marine engineering equipment, It is very urgent to develop the protective coating material with the integration of wear resistance and self-lubrication. The TiSiN coating with ultra-high hardness and excellent wear resistance and the material with excellent self-lubricating property Ti_3SiC_2MAX phase have been paid more and more attention. High hardness was prepared by controlling deposition parameters by multi-arc ion plating. On the basis of this, the particle energy in the deposition process was changed by adjusting the deposition bias voltage, and the TiSiCN coating with the coupling structure of amorphous nanocrystalline and Ti_3SiC_2MAX phase was prepared, and the constitutive relationship between the phase structure and the wear resistance was established. The failure mechanism of the coating in seawater is also revealed. The following conclusions are obtained: 1. TiSiCN coating contains TiN- TiC and TiC- (N) nanocrystalline. Amorphous Si3N4 and SiC and a small amount of amorphous carbon. When the carbon content is 11.9 at.%, the TiSiCN coating exhibits the highest hardness and excellent abrasion resistance. Due to the graphitization transition and transfer of carbon in the coating, the TiSiCN coating with a carbon content of 22.2 at.% exhibits excellent tribological properties .3.The degradation of the coating in seawater is mainly caused by mechanical wear. In addition, the interaction between wear and corrosion is also an important factor in the degradation of TiSiCN coatings. The change of ion energy caused by bias voltage has a significant effect on the microstructure and properties of TiSiCN coatings. The grain size is decreasing and the compressive stress is increasing. With the increase of deposition bias, the peak position in the coating shifts from TiN to TiC gradually. 5. When the deposition bias voltage is -100V, the TiSiCN coating has the coupling structure of amorphous nanocrystalline nc-TiCU / 偽 -Si3N4SiC) and a small amount of Ti_3SiC_2MAX phase. At this time, the TiSiCN coating exhibits high hardness and excellent wear resistance. 6. When the structure of the coating does not form a penetrating crack, the existence of the protective potential can effectively protect the coating from electrochemical corrosion. However, when seawater is immersed into the substrate along the corrosion channel, the existence of protective potential accelerates the degradation of the coating.
【學(xué)位授予單位】:寧波大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG174.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳君;張清;李全安;付三玲;王建章;;AISI 316不銹鋼和Ti6Al4V合金在海水環(huán)境中的腐蝕與腐蝕磨損行為(英文)[J];Transactions of Nonferrous Metals Society of China;2014年04期
2 余東海;王成勇;成曉玲;宋月賢;;磁控濺射鍍膜技術(shù)的發(fā)展[J];真空;2009年02期
3 肖永清;;詮釋現(xiàn)代車用鈦合金的應(yīng)用及前景[J];鋁加工;2008年01期
4 邸英浩,曹曉明;真空鍍膜技術(shù)的現(xiàn)狀及進(jìn)展[J];天津冶金;2004年05期
5 李梁,孫健科,孟祥軍;鈦合金的應(yīng)用現(xiàn)狀及發(fā)展前景[J];鈦工業(yè)進(jìn)展;2004年05期
6 周健兒,李家科,江偉輝;金屬基陶瓷涂層的制備、應(yīng)用及發(fā)展[J];陶瓷學(xué)報;2004年03期
7 敖育紅,胡少六,龍華,徐業(yè)斌,王又青;脈沖激光沉積薄膜技術(shù)研究新進(jìn)展[J];激光技術(shù);2003年05期
8 焦素娟,周華,楊華勇,龔國芳;水潤滑條件下等離子陶瓷涂層的磨損機(jī)理研究[J];中國機(jī)械工程;2003年06期
9 蔡元霸,梁玉倉;納米材料的概述、制備及其結(jié)構(gòu)表征[J];結(jié)構(gòu)化學(xué);2001年06期
10 胡昌義,李靖華;化學(xué)氣相沉積技術(shù)與材料制備[J];稀有金屬;2001年05期
,本文編號:1696019
本文鏈接:http://www.lk138.cn/kejilunwen/jiagonggongyi/1696019.html