基于貝葉斯壓縮感知的周跳探測與修復(fù)方法
發(fā)布時間:2018-10-17 13:55
【摘要】:針對觀測噪聲對周跳探測與修復(fù)性能的影響,提出了一種新的利用貝葉斯壓縮感知技術(shù)進行周跳探測與修復(fù)的方法.在歷元間-站間載波相位雙差觀測模型的基礎(chǔ)上,通過挖掘周跳信號的稀疏特性,獲取感知矩陣,推導(dǎo)并建立稀疏周跳探測模型,利用稀疏貝葉斯學(xué)習(xí)中的相關(guān)向量機原理,結(jié)合周跳相關(guān)數(shù)據(jù)的先驗信息,基于主動相關(guān)決策理論,進行回歸估計獲得周跳預(yù)測值的分布,進而實現(xiàn)周跳的探測與修復(fù).實驗表明,新方法在僅利用單頻或雙頻載波相位觀測量的情況下能有效探測并修復(fù)周跳,性能優(yōu)于正交匹配追蹤法及l(fā)_1范數(shù)法.
[Abstract]:Aiming at the effect of observation noise on cycle slip detection and repair performance, a new method of cycle slip detection and repair using Bayesian compression sensing technique is proposed. Based on the double difference observation model of carrier phase between epoch and station, the sparse characteristic of cycle hopping signal is excavated, the perception matrix is obtained, the detection model of sparse cycle slip is deduced and established, and the principle of correlation vector machine in sparse Bayesian learning is used. Based on the prior information of cycle slip correlation data and active correlation decision theory, the distribution of cycle slip prediction value is obtained by regression estimation, and the cycle slip detection and repair is realized. Experiments show that the new method can effectively detect and repair cycle slips with only single or double frequency carrier phase observations, and the performance of the new method is better than that of orthogonal matching tracking method and L _ S _ 1-norm method.
【作者單位】: 哈爾濱工程大學(xué)自動化學(xué)院;
【基金】:國家自然科學(xué)基金(批準(zhǔn)號:61273081);國家自然科學(xué)基金青年基金(批準(zhǔn)號:61304235,61401114) 中央高校基本科研業(yè)務(wù)費專項資金(批準(zhǔn)號:HEUCFD1431) 國家留學(xué)基金資助的課題~~
【分類號】:P228.4
[Abstract]:Aiming at the effect of observation noise on cycle slip detection and repair performance, a new method of cycle slip detection and repair using Bayesian compression sensing technique is proposed. Based on the double difference observation model of carrier phase between epoch and station, the sparse characteristic of cycle hopping signal is excavated, the perception matrix is obtained, the detection model of sparse cycle slip is deduced and established, and the principle of correlation vector machine in sparse Bayesian learning is used. Based on the prior information of cycle slip correlation data and active correlation decision theory, the distribution of cycle slip prediction value is obtained by regression estimation, and the cycle slip detection and repair is realized. Experiments show that the new method can effectively detect and repair cycle slips with only single or double frequency carrier phase observations, and the performance of the new method is better than that of orthogonal matching tracking method and L _ S _ 1-norm method.
【作者單位】: 哈爾濱工程大學(xué)自動化學(xué)院;
【基金】:國家自然科學(xué)基金(批準(zhǔn)號:61273081);國家自然科學(xué)基金青年基金(批準(zhǔn)號:61304235,61401114) 中央高校基本科研業(yè)務(wù)費專項資金(批準(zhǔn)號:HEUCFD1431) 國家留學(xué)基金資助的課題~~
【分類號】:P228.4
【相似文獻】
相關(guān)期刊論文 前10條
1 楊高風(fēng);和新丹;侯紅松;劉亞;;周跳的產(chǎn)生與探測[J];中國西部科技;2010年01期
2 毋利娜;;用小波方法進行周跳探測的比較[J];地理空間信息;2011年04期
3 楊靜,張洪鉞;基于最優(yōu)奇偶向量檢測的周跳檢測[J];中國慣性技術(shù)學(xué)報;2003年02期
4 鄭作亞,程宗頤,黃s,
本文編號:2276879
本文鏈接:http://www.lk138.cn/kejilunwen/dizhicehuilunwen/2276879.html
最近更新
教材專著