基于田口法的高密度倒裝微銅柱凸點熱失效分析
發(fā)布時間:2018-12-17 00:34
【摘要】:采用有限元模擬法,分析在熱循環(huán)載荷條件下高密度倒裝芯片封裝微銅柱凸點的失效行為,并以微銅柱凸點的最大累積塑性應(yīng)變能密度作為響應(yīng),采用3因素3水平的田口正交試驗法分析倒裝芯片封裝的主要結(jié)構(gòu)參數(shù)和材料屬性對其熱失效行為的影響.結(jié)果表明,距離封裝中心最遠(yuǎn)處的微銅柱凸點是封裝體中的關(guān)鍵微凸點,熱疲勞導(dǎo)致的裂紋易在該微銅柱凸點的基板側(cè)焊料外側(cè)形成.底部填充膠的線膨脹系數(shù)對微銅柱凸點熱失效的影響最大,影響適中的是底部填充膠的彈性模量,最弱的是芯片厚度.
[Abstract]:In this paper, the finite element simulation method is used to analyze the failure behavior of the convex points of microcopper columns encapsulated by high density inverted chips under thermal cyclic loading, and the maximum cumulative plastic strain energy density of the convex points of copper columns is taken as the response. The influence of main structure parameters and material properties on thermal failure behavior of inverted chip packaging was analyzed by using three factors and three levels of Taguchi orthogonal test method. The results show that the convex spot of the micro-copper column is the key microconvex spot in the package, and the crack caused by thermal fatigue is easily formed outside the side solder of the convex spot of the micro-copper column. The linear expansion coefficient of the bottom filling adhesive has the greatest influence on the thermal failure of the convex spot of the micro-copper column. The moderate effect is the elastic modulus of the bottom filled adhesive and the weakest is the chip thickness.
【作者單位】: 河南工業(yè)大學(xué)機電工程學(xué)院;華中科技大學(xué)武漢光電國家實驗室;
【基金】:國家自然科學(xué)基金資助項目(U1504507) 河南省科技攻關(guān)資助項目(162102410018) 河南省高等學(xué)校重點科研項目計劃(17H130004)
【分類號】:TN405
本文編號:2383322
[Abstract]:In this paper, the finite element simulation method is used to analyze the failure behavior of the convex points of microcopper columns encapsulated by high density inverted chips under thermal cyclic loading, and the maximum cumulative plastic strain energy density of the convex points of copper columns is taken as the response. The influence of main structure parameters and material properties on thermal failure behavior of inverted chip packaging was analyzed by using three factors and three levels of Taguchi orthogonal test method. The results show that the convex spot of the micro-copper column is the key microconvex spot in the package, and the crack caused by thermal fatigue is easily formed outside the side solder of the convex spot of the micro-copper column. The linear expansion coefficient of the bottom filling adhesive has the greatest influence on the thermal failure of the convex spot of the micro-copper column. The moderate effect is the elastic modulus of the bottom filled adhesive and the weakest is the chip thickness.
【作者單位】: 河南工業(yè)大學(xué)機電工程學(xué)院;華中科技大學(xué)武漢光電國家實驗室;
【基金】:國家自然科學(xué)基金資助項目(U1504507) 河南省科技攻關(guān)資助項目(162102410018) 河南省高等學(xué)校重點科研項目計劃(17H130004)
【分類號】:TN405
【相似文獻(xiàn)】
相關(guān)期刊論文 前3條
1 張超;孔德仁;賈云飛;;基于自適應(yīng)加權(quán)融合的標(biāo)準(zhǔn)銅柱鑒選研究[J];電子測量技術(shù);2010年07期
2 王燕杰;李青;;渦流法檢測銅柱高度[J];工業(yè)控制計算機;2013年06期
3 ;[J];;年期
相關(guān)重要報紙文章 前1條
1 ;隱形斗篷:能把一個銅柱變“沒”了[N];新華每日電訊;2006年
相關(guān)碩士學(xué)位論文 前5條
1 江偉;基于TSV的銅柱應(yīng)力分析及結(jié)構(gòu)優(yōu)化[D];哈爾濱理工大學(xué);2016年
2 孫帥飛;靜標(biāo)銅柱高低溫校準(zhǔn)裝置及修正方法研究[D];南京理工大學(xué);2013年
3 劉冰冰;測壓銅柱靜態(tài)標(biāo)定體制的研究[D];南京理工大學(xué);2009年
4 曹程良;基于銅柱凸塊覆晶技術(shù)的移動裝置處理芯片封裝工藝創(chuàng)新研究[D];復(fù)旦大學(xué);2012年
5 韓成輝;測壓銅柱靜態(tài)及動態(tài)力學(xué)特性分析[D];南京理工大學(xué);2008年
,本文編號:2383322
本文鏈接:http://www.lk138.cn/kejilunwen/dianzigongchenglunwen/2383322.html
最近更新
教材專著