基于箱粒子濾波的多目標(biāo)跟蹤算法研究
[Abstract]:Because of its wide application, target tracking has been paid more and more attention by experts and scholars. In the actual tracking scene, there is always more than one object of interest. With the appearance and disappearance of moving targets, the number of targets also changes in real time, and the corresponding multi-target tracking technology has made great progress. Box particle filter is a new generalized particle filter method proposed in recent years. It has the advantages of small number of particles, low computational complexity and high computational efficiency. On the basis of box particle filter, the multi-target tracking method is studied in this paper. The theoretical basis of box particle filter is introduced. Box particle filter is a generalized particle filter algorithm, which combines interval analysis, a mathematical tool, with the traditional Monte Carlo algorithm, and uses box particles instead of point particles with known maximum error. It is a method of dealing with imprecise measurement. Compared with the traditional particle filter algorithm, the box particle filter algorithm has a good performance. On the premise of keeping tracking accuracy, the number of particles used is less, the calculation amount of the algorithm is reduced, and the computation time is saved. The operation efficiency is greatly improved. On the basis of box particle and random set, a new multi-target tracking method, BP-CPHD (Particle potential probability assumption density filter), is proposed in this paper. The algorithm preserves the advantages of box particle filter and combines the advantages of CPHD filter. Compared with the traditional particle CPHD algorithm, it has low computational complexity and high computational efficiency. Compared with the probability assumption density (BP-PHD) algorithm based on box particle, it is not necessary to make the assumption that the distribution of target number accords with Poisson distribution, and the sensitivity of filter to clutter and miss detection is well solved. By recursive potential distribution of the number of targets, the deviation of the number of targets is estimated to be smaller, thus the tracking effect is improved. In the maneuvering target tracking problem, combining the (BPCPHD) algorithm based on the potential probability assumption density filter proposed by the box particle and the interactive multiple model algorithm, the paper proposes the box particle potential probability assumption density filter (IMM-BP-CPHD) based on the interactive multiple model. The algorithm not only inherits the advantages of the probability assumption density filter algorithm of box particle potential, but also can effectively track multiple maneuvering targets. The algorithm is compared with the interactive multi-model particle potential probability assumption density algorithm under interval measurement, which shows the advantages of the proposed algorithm, such as fast running speed and so on.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TN713
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋驪平;嚴(yán)超;姬紅兵;梁萌;;基于箱粒子的多擴(kuò)展目標(biāo)PHD濾波[J];控制與決策;2015年10期
2 連峰;元向輝;陳輝;;基于勢概率假設(shè)密度濾波器的不可分辨目標(biāo)跟蹤算法[J];系統(tǒng)工程與電子技術(shù);2013年12期
3 王曉;韓崇昭;連峰;;基于隨機(jī)有限集的目標(biāo)跟蹤方法研究及最新進(jìn)展[J];工程數(shù)學(xué)學(xué)報;2012年04期
4 周衛(wèi)東;張鶴冰;吉宇人;;基于SMC-CPHD的多目標(biāo)跟蹤算法研究[J];宇航學(xué)報;2012年04期
5 張俊根;姬紅兵;蔡紹曉;;基于高斯粒子JPDA濾波的多目標(biāo)跟蹤算法[J];電子與信息學(xué)報;2010年11期
6 歐陽成;姬紅兵;張俊根;;一種改進(jìn)的CPHD多目標(biāo)跟蹤算法[J];電子與信息學(xué)報;2010年09期
7 劉偉峰;文成林;;隨機(jī)集多目標(biāo)跟蹤性能評價指標(biāo)比較與分析[J];光電工程;2010年09期
8 孫吉貴;劉杰;趙連宇;;聚類算法研究[J];軟件學(xué)報;2008年01期
9 劉貴喜;高恩克;范春宇;;改進(jìn)的交互式多模型粒子濾波跟蹤算法[J];電子與信息學(xué)報;2007年12期
10 彭冬亮;文成林;徐曉濱;薛安克;;隨機(jī)集理論及其在信息融合中的應(yīng)用[J];電子與信息學(xué)報;2006年11期
相關(guān)博士學(xué)位論文 前1條
1 張鶴冰;概率假設(shè)密度濾波算法及其在多目標(biāo)跟蹤中的應(yīng)用[D];哈爾濱工程大學(xué);2012年
相關(guān)碩士學(xué)位論文 前2條
1 趙雪剛;箱粒子濾波及其在目標(biāo)跟蹤中的應(yīng)用研究[D];西安電子科技大學(xué);2014年
2 董祥磊;基于CPHD濾波的多目標(biāo)跟蹤方法研究[D];哈爾濱工業(yè)大學(xué);2013年
,本文編號:2377686
本文鏈接:http://www.lk138.cn/kejilunwen/dianzigongchenglunwen/2377686.html