中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁 > 科技論文 > 電子信息論文 >

基于箱粒子濾波的多目標(biāo)跟蹤算法研究

發(fā)布時間:2018-12-14 01:50
【摘要】:目標(biāo)跟蹤由于應(yīng)用廣泛,受到了專家學(xué)者的普遍關(guān)注。在實(shí)際的跟蹤場景中,感興趣的目標(biāo)往往不止一個,隨著運(yùn)動目標(biāo)的出現(xiàn)和消失,目標(biāo)的數(shù)目也是實(shí)時變化的,相應(yīng)的多目標(biāo)跟蹤技術(shù)取得了巨大的發(fā)展。箱粒子濾波是近年來新提出的一種廣義的粒子濾波方法,具有所需粒子數(shù)目少,計算復(fù)雜度低,計算效率高等優(yōu)點(diǎn)。本文在箱粒子濾波基礎(chǔ)上,對多目標(biāo)跟蹤方法進(jìn)行了深入研究。介紹了箱粒子濾波的理論基礎(chǔ)。箱粒子濾波本質(zhì)上是廣義的粒子濾波算法,它將區(qū)間分析這一數(shù)學(xué)工具與傳統(tǒng)的蒙特卡洛算法相結(jié)合,用箱粒子代替了最大誤差已知的點(diǎn)粒子,是一種處理非精確量測的方法。跟傳統(tǒng)的粒子濾波算法相比箱粒子濾波算法體現(xiàn)出了良好的性能,在保持跟蹤精度的前提下,所用粒子數(shù)目少,減少了算法的計算量,節(jié)省了運(yùn)算時間,極大的提高了運(yùn)算效率。本文在箱粒子和隨機(jī)集的基礎(chǔ)上,提出了一種新的多目標(biāo)跟蹤方法,箱粒子勢概率假設(shè)密度濾波方法(BP-CPHD)。該算法保持了箱粒子濾波算法優(yōu)點(diǎn),又結(jié)合了CPHD濾波的優(yōu)勢。與傳統(tǒng)的粒子CPHD算法相比,它的計算復(fù)雜度低,運(yùn)算效率高。與基于箱粒子的概率假設(shè)密度(BP-PHD)算法相比,不需要對目標(biāo)數(shù)目的分布做出符合泊松分布的假設(shè),較好的解決了濾波器對雜波和漏檢的敏感問題。通過遞推目標(biāo)數(shù)目的勢分布,對目標(biāo)數(shù)目做出了偏差更小的估計,從而提高了跟蹤效果。在機(jī)動目標(biāo)跟蹤問題中,結(jié)合提出的基于箱粒子的勢概率假設(shè)密度濾波(BPCPHD)算法和交互多模型算法,提出了交互多模型的箱粒子勢概率假設(shè)密度濾波(IMM-BP-CPHD),該算法繼承了箱粒子勢概率假設(shè)密度濾波算法的優(yōu)點(diǎn),同時又能對多機(jī)動目標(biāo)進(jìn)行有效的跟蹤,通過仿真實(shí)驗,將該算法與區(qū)間量測下的交互多模型粒子勢概率假設(shè)密度算法進(jìn)行對比,體現(xiàn)了所提算法運(yùn)行速度快等優(yōu)點(diǎn)。
[Abstract]:Because of its wide application, target tracking has been paid more and more attention by experts and scholars. In the actual tracking scene, there is always more than one object of interest. With the appearance and disappearance of moving targets, the number of targets also changes in real time, and the corresponding multi-target tracking technology has made great progress. Box particle filter is a new generalized particle filter method proposed in recent years. It has the advantages of small number of particles, low computational complexity and high computational efficiency. On the basis of box particle filter, the multi-target tracking method is studied in this paper. The theoretical basis of box particle filter is introduced. Box particle filter is a generalized particle filter algorithm, which combines interval analysis, a mathematical tool, with the traditional Monte Carlo algorithm, and uses box particles instead of point particles with known maximum error. It is a method of dealing with imprecise measurement. Compared with the traditional particle filter algorithm, the box particle filter algorithm has a good performance. On the premise of keeping tracking accuracy, the number of particles used is less, the calculation amount of the algorithm is reduced, and the computation time is saved. The operation efficiency is greatly improved. On the basis of box particle and random set, a new multi-target tracking method, BP-CPHD (Particle potential probability assumption density filter), is proposed in this paper. The algorithm preserves the advantages of box particle filter and combines the advantages of CPHD filter. Compared with the traditional particle CPHD algorithm, it has low computational complexity and high computational efficiency. Compared with the probability assumption density (BP-PHD) algorithm based on box particle, it is not necessary to make the assumption that the distribution of target number accords with Poisson distribution, and the sensitivity of filter to clutter and miss detection is well solved. By recursive potential distribution of the number of targets, the deviation of the number of targets is estimated to be smaller, thus the tracking effect is improved. In the maneuvering target tracking problem, combining the (BPCPHD) algorithm based on the potential probability assumption density filter proposed by the box particle and the interactive multiple model algorithm, the paper proposes the box particle potential probability assumption density filter (IMM-BP-CPHD) based on the interactive multiple model. The algorithm not only inherits the advantages of the probability assumption density filter algorithm of box particle potential, but also can effectively track multiple maneuvering targets. The algorithm is compared with the interactive multi-model particle potential probability assumption density algorithm under interval measurement, which shows the advantages of the proposed algorithm, such as fast running speed and so on.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TN713

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 宋驪平;嚴(yán)超;姬紅兵;梁萌;;基于箱粒子的多擴(kuò)展目標(biāo)PHD濾波[J];控制與決策;2015年10期

2 連峰;元向輝;陳輝;;基于勢概率假設(shè)密度濾波器的不可分辨目標(biāo)跟蹤算法[J];系統(tǒng)工程與電子技術(shù);2013年12期

3 王曉;韓崇昭;連峰;;基于隨機(jī)有限集的目標(biāo)跟蹤方法研究及最新進(jìn)展[J];工程數(shù)學(xué)學(xué)報;2012年04期

4 周衛(wèi)東;張鶴冰;吉宇人;;基于SMC-CPHD的多目標(biāo)跟蹤算法研究[J];宇航學(xué)報;2012年04期

5 張俊根;姬紅兵;蔡紹曉;;基于高斯粒子JPDA濾波的多目標(biāo)跟蹤算法[J];電子與信息學(xué)報;2010年11期

6 歐陽成;姬紅兵;張俊根;;一種改進(jìn)的CPHD多目標(biāo)跟蹤算法[J];電子與信息學(xué)報;2010年09期

7 劉偉峰;文成林;;隨機(jī)集多目標(biāo)跟蹤性能評價指標(biāo)比較與分析[J];光電工程;2010年09期

8 孫吉貴;劉杰;趙連宇;;聚類算法研究[J];軟件學(xué)報;2008年01期

9 劉貴喜;高恩克;范春宇;;改進(jìn)的交互式多模型粒子濾波跟蹤算法[J];電子與信息學(xué)報;2007年12期

10 彭冬亮;文成林;徐曉濱;薛安克;;隨機(jī)集理論及其在信息融合中的應(yīng)用[J];電子與信息學(xué)報;2006年11期

相關(guān)博士學(xué)位論文 前1條

1 張鶴冰;概率假設(shè)密度濾波算法及其在多目標(biāo)跟蹤中的應(yīng)用[D];哈爾濱工程大學(xué);2012年

相關(guān)碩士學(xué)位論文 前2條

1 趙雪剛;箱粒子濾波及其在目標(biāo)跟蹤中的應(yīng)用研究[D];西安電子科技大學(xué);2014年

2 董祥磊;基于CPHD濾波的多目標(biāo)跟蹤方法研究[D];哈爾濱工業(yè)大學(xué);2013年



本文編號:2377686

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/kejilunwen/dianzigongchenglunwen/2377686.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a4e28***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com