中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁(yè) > 科技論文 > 電子信息論文 >

Bragg少模光纖的設(shè)計(jì)與性能分析

發(fā)布時(shí)間:2018-09-12 08:38
【摘要】:隨著光纖通信網(wǎng)絡(luò)的快速發(fā)展,現(xiàn)有單模光纖的通信容量已接近其香農(nóng)極限,逐漸無(wú)法滿(mǎn)足當(dāng)今信息日益增長(zhǎng)的需求。模分復(fù)用技術(shù)可以很好地解決光纖通信容量日益飽和這一問(wèn)題,而少模光纖則是模分復(fù)用系統(tǒng)中的關(guān)鍵器件。纖芯內(nèi)支持一定數(shù)量模式傳輸?shù)墓饫w,稱(chēng)為少模光纖。少模光纖與單模光纖相比的一大優(yōu)點(diǎn)是可以采用模分復(fù)用技術(shù)來(lái)增大少模光纖的傳輸容量;同時(shí),少模光纖結(jié)構(gòu)參數(shù)在合理范圍內(nèi)的改變,可以控制光纖中傳導(dǎo)模式的數(shù)量,有效地降低模式色散和模間串?dāng)_。此外,少模光纖還可應(yīng)用于光纖光柵和光纖傳感等領(lǐng)域。為了獲得一種適合于工作在1550nm波長(zhǎng)的Bragg少模光纖,本文提出了一種工作波長(zhǎng)為1550nm的Bragg少模光纖,通過(guò)分析Bragg光纖的損耗來(lái)源以及材料特性,選取SiO2和Si作為Bragg光纖包層材料,并確定其包層晶格周期為4μm。利用基于全矢量有限元法(FEM)的仿真軟件COMSOL Multiphysics進(jìn)行仿真計(jì)算,從傳輸容量和模式損耗兩方面考慮,對(duì)空心Bragg少模光纖的結(jié)構(gòu)參數(shù)進(jìn)行優(yōu)化,當(dāng)Bragg光纖結(jié)構(gòu)參數(shù)為:纖芯內(nèi)徑為9.3μm,包層直徑為117.6μm,包層周期數(shù)為13,晶格周期為4μm,SiO2和Si介質(zhì)層的厚度分別為2.9μm和1.1μm,包層第一周期為4.15μm時(shí),實(shí)現(xiàn)了其在1550nm的大容量、低損耗傳輸,可以同時(shí)傳輸7個(gè)線(xiàn)偏振模式,其中6個(gè)線(xiàn)偏振模式的損耗低于0.01 dB/m且LP31模損耗低至1.8E-4dB/m,優(yōu)于已有的少模光纖的性能?紤]到制備工藝的不完善性,本文分析了在Bragg光纖制備過(guò)程中可能出現(xiàn)的結(jié)構(gòu)誤差,如纖芯大小或形狀發(fā)生改變、纖芯與包層圓心發(fā)生偏離。仿真結(jié)果表明,以上結(jié)構(gòu)誤差均會(huì)使Bragg光纖傳輸容量減小,損耗增大,且隨著結(jié)構(gòu)誤差的增大,Bragg光纖原有的性能急劇劣化。因此在光纖制備過(guò)程中應(yīng)盡量避免引入較大的結(jié)構(gòu)誤差,影響B(tài)ragg光纖原有的大容量、低損耗特性。研究結(jié)果對(duì)指導(dǎo)Bragg少模光纖制備,避免制備過(guò)程中的誤差對(duì)光纖性能產(chǎn)生影響具有重要意義;同時(shí)可以加快Bragg少模光纖以及相關(guān)模分復(fù)用系統(tǒng)的實(shí)用化進(jìn)程,使光纖通信容量進(jìn)一步提高。
[Abstract]:With the rapid development of optical fiber communication network, the communication capacity of the existing single-mode optical fiber is close to its Shannon limit and can not meet the increasing demand of information. Mode division multiplexing technology can solve the problem of increasing saturation of optical fiber communication capacity, and less mode fiber is the key device in mode division multiplexing system. The fiber in the core that supports a certain number of modes of transmission is called a small mode fiber. One of the advantages of low-mode fiber compared with single-mode fiber is that mode division multiplexing technique can be used to increase the transmission capacity of low-mode fiber, and the number of conduction modes can be controlled by changing the structural parameters of low-mode fiber within a reasonable range. Mode dispersion and inter-mode crosstalk are effectively reduced. In addition, the low-mode fiber can also be used in fiber grating and fiber sensing and other fields. In order to obtain a kind of Bragg low-mode fiber suitable for working at 1550nm wavelength, a kind of Bragg low-mode fiber with working wavelength of 1550nm is proposed in this paper. By analyzing the source of loss and material characteristics of Bragg fiber, SiO2 and Si are selected as the cladding materials of Bragg fiber. The cladding lattice period is determined to be 4 渭 m. The simulation software COMSOL Multiphysics based on full-vector finite element method (FEM) is used to simulate and calculate the structural parameters of hollow Bragg low-mode fiber from the aspects of transmission capacity and mode loss. When the structure parameters of Bragg fiber are as follows: core diameter 9.3 渭 m, cladding diameter 117.6 渭 m, cladding cycle number 13, lattice cycle 4 渭 m and Si dielectric thickness 2.9 渭 m and 1.1 渭 m, respectively. Seven linear polarization modes can be transmitted at the same time. The loss of six linear polarization modes is less than 0. 01 dB/m and the loss of LP31 mode is as low as 1. 8 E-4 dB / m, which is superior to the performance of the existing low mode fiber. Considering the imperfection of the fabrication process, the possible structural errors in the fabrication of Bragg fiber are analyzed, such as the change of the core size or shape, and the deviation between the core and the core of the cladding. The simulation results show that the structural errors above can reduce the transmission capacity and increase the loss of Bragg fiber, and with the increase of structural error, the original performance of Bragg fiber will deteriorate sharply. Therefore, large structural errors should be avoided in the fabrication process of Bragg fiber, which will affect the original large capacity and low loss characteristics of Bragg fiber. The research results have important significance to guide the preparation of Bragg low-mode fiber and avoid the influence of errors in the fabrication process on the performance of fiber, and can accelerate the practical process of Bragg low-mode fiber and related mode-division multiplexing system. The capacity of optical fiber communication is further improved.
【學(xué)位授予單位】:南京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TN253

【參考文獻(xiàn)】

相關(guān)期刊論文 前6條

1 徐閔喃;周桂耀;陳成;侯峙云;夏長(zhǎng)明;周概;劉宏展;劉建濤;張衛(wèi);;具有四模式的低串?dāng)_及大群時(shí)延多芯微結(jié)構(gòu)光纖的設(shè)計(jì)[J];物理學(xué)報(bào);2015年23期

2 曹原;施偉華;孫雨昕;徐冠杰;;低彎曲損耗雙模光子晶體光纖的研究[J];光通信技術(shù);2015年08期

3 陳艷;周桂耀;夏長(zhǎng)明;侯峙云;劉宏展;王超;;具有雙模特性的大模場(chǎng)面積微結(jié)構(gòu)光纖的設(shè)計(jì)[J];物理學(xué)報(bào);2014年01期

4 姚殊暢;付松年;張敏明;唐明;沈平;劉德明;;基于少模光纖的模分復(fù)用系統(tǒng)多輸入多輸出均衡與解調(diào)[J];物理學(xué)報(bào);2013年14期

5 陳超;陳鶴鳴;汪靜麗;趙新彥;錢(qián)晨;;紅外空心布拉格光纖損耗特性的研究[J];光通信研究;2012年04期

6 Abid Munir;忻向軍;劉博;Abdul Latif;Aftab Hussain;Shahab Ahmad Niazi;;Numerical analysis of intermodal delay in few-mode fibers for mode division multiplexing in optical fiber communication systems[J];Optoelectronics Letters;2012年02期

相關(guān)博士學(xué)位論文 前1條

1 蘭名榮;模分復(fù)用光纖通信系統(tǒng)中模式控制關(guān)鍵技術(shù)研究[D];北京郵電大學(xué);2015年

相關(guān)碩士學(xué)位論文 前4條

1 王飛雪;雙模色散平坦光子晶體光纖的研究[D];山西師范大學(xué);2014年

2 胡倩倩;多種缺陷對(duì)紅外光子晶體光纖性能影響的研究[D];南京郵電大學(xué);2012年

3 王雯;中紅外傳輸空心Bragg光纖[D];清華大學(xué);2009年

4 劉梅林;二維時(shí)域有限元方法及其在電磁場(chǎng)分析中的應(yīng)用[D];南京農(nóng)業(yè)大學(xué);2006年

,

本文編號(hào):2238482

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/kejilunwen/dianzigongchenglunwen/2238482.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)954a1***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
  • <style id="2uhb6"><track id="2uhb6"></track></style>

      <ruby id="2uhb6"></ruby><big id="2uhb6"><sup id="2uhb6"><wbr id="2uhb6"></wbr></sup></big>

      <dl id="2uhb6"></dl>
      <big id="2uhb6"><sup id="2uhb6"><wbr id="2uhb6"></wbr></sup></big>