有序二氧化硅納米通道薄膜的電化學(xué)研究
發(fā)布時間:2018-05-07 01:06
本文選題:二氧化硅納米通道薄膜 + 電化學(xué)整流; 參考:《浙江大學(xué)》2015年博士論文
【摘要】:納米通道是一種孔徑在1-100nm范圍,并且孔道深度大于孔徑的孔狀或管狀結(jié)構(gòu),具有尺寸可控、比表面積大、表面易修飾等優(yōu)點,已成為化學(xué)、材料、生命科學(xué)等領(lǐng)域中的重要研究對象。納米通道在分析、分離、單分子檢測、藥物傳遞、仿生離子通道模擬以及其它納米材料的合成等方面均有良好的應(yīng)用前景。受天然生物納米孔道的啟發(fā),科學(xué)家們利用各種前沿的物理化學(xué)技術(shù)制備了多種人工固體納米通道。垂直有序的二氧化硅納米通道為一種較新的固體納米孔道,具有制備方法簡單、重現(xiàn)性好、物理化學(xué)性質(zhì)穩(wěn)定等優(yōu)點。本論文以有序二氧化硅納米通道為基礎(chǔ),研究了分子在二氧化硅納米通道中的傳輸以及電活性物質(zhì)在其中的負(fù)載。開展的工作具體如下:依據(jù)二氧化硅納米通道的表面性質(zhì),研究了二氧化硅納米通道薄膜的選擇滲透性。二氧化硅納米通道表面帶有羥基,等電點為2-3,在pH大于3的溶液中二氧化硅表面帶負(fù)電荷。以三種帶不同電荷的探針分子為例,考察了表面電荷對分子在納米通道中傳輸?shù)挠绊。通過修飾胺基使二氧化硅表面帶正電荷,此時帶不同電荷的探針分子在其通道中的傳輸情況發(fā)生翻轉(zhuǎn)。此外,二氧化硅納米孔的直徑為2-3 nm,在此納米尺度上表面雙電層發(fā)生重疊。低離子強(qiáng)度下,與二氧化硅表面帶相同電荷的分子在其通道中的傳輸受到明顯地影響。利用金電極上硫醇二茂鐵分子自組裝膜的整流效應(yīng)構(gòu)建了AND邏輯門。首先在含有垂直二氧化硅納米通道薄膜的金電極表面組裝硫醇二茂鐵分子。由于硫醇二茂鐵分子的氧化電位高于溶液中的亞鐵氰化鉀(Fe(CN)64-)探針分子,因此產(chǎn)生陽極整流。整流的程度用陰極峰電流與陽極峰電流的比值來評價,當(dāng)陰極峰電流消失時為完全整流。實驗發(fā)現(xiàn),隨著Fe(CN)64-濃度的增大,硫醇二茂鐵的整流效應(yīng)越來越明顯。當(dāng)探針分子的濃度大于90μM時,發(fā)生完全整流。由于雙電層重疊,能夠進(jìn)入二氧化硅納米通道與硫醇二茂鐵發(fā)生反應(yīng)的Fe(CN)64-的量受電解質(zhì)濃度的控制。在Fe(CN)64-濃度一定的情況下,隨著電解質(zhì)濃度的增加,整流效應(yīng)越來越明顯;當(dāng)NaClO4的濃度接近0.1 M時,Fe(CN)64-可自由的進(jìn)入二氧化硅納米通道,發(fā)生完全整流。利用探針分子和電解質(zhì)的濃度對硫醇二茂鐵整流效應(yīng)的影響構(gòu)建了AND邏輯門。制備了聚苯胺-介孔二氧化硅納米復(fù)合材料。以具有垂直于電極表面納米通道的二氧化硅為硬模板,用電化學(xué)聚合的方法在孔道中沉積聚苯胺。通過調(diào)節(jié)電聚合時間與苯胺單體的濃度,可以控制苯胺的電聚合只發(fā)生在二氧化硅納米通道內(nèi)。得到的聚苯胺-介孔二氧化硅復(fù)合物對抗壞血酸(AA)的電化學(xué)氧化有較好的催化活性,可用于AA的定量分析,在0.1-1.0mM范圍內(nèi)氧化峰電流與AA的濃度有較好的線性關(guān)系。該復(fù)合物還可以用作pH傳感器,在pH 3~9范圍內(nèi)電極電勢與pH呈能斯特響應(yīng)。研究了金屬納米顆粒在二氧化硅納米通道內(nèi)的負(fù)載及其電催化和電分析性能。通過在二氧化硅通道中修飾可與金屬前驅(qū)體發(fā)生相互作用的基團(tuán),將金屬前驅(qū)體引入到二氧化硅通道中,最后經(jīng)過化學(xué)還原將二氧化硅通道中的金屬前驅(qū)體還原為金屬納米顆粒。通過在介孔二氧化硅通道中修飾可與金前驅(qū)體發(fā)生靜電吸引作用的氨基基團(tuán),合成了粒徑分布較窄且不含有機(jī)保護(hù)基團(tuán)的金納米顆粒。在第三章工作的基礎(chǔ)上,利用鉑前驅(qū)體與聚苯胺骨架結(jié)構(gòu)中仲胺和叔胺的相互作用,在二氧化硅通道內(nèi)同時引入了聚苯胺與鉑納米顆粒兩種活性基團(tuán)。該復(fù)合材料具有良好的電催化活性,可檢測較寬濃度范圍(1.0 μM-2.0 mM)內(nèi)的H2O2,并且具有較高的靈敏度(50μA mM-1)和較低的檢測限(0.24 μM,S/N=3)。
[Abstract]:Nanoscale is a porous or tubular structure with aperture in the range of 1-100nm, and the pore depth is larger than the aperture. It has the advantages of size controllable, large surface area and surface modification. It has become an important research object in the fields of chemistry, material, life science and so on. The nanoscale channel is analyzed, separated, single molecule detection, drug delivery, bionic ion The channel simulation and the synthesis of other nanomaterials have good application prospects. Inspired by the nanoscale nanomaterials, scientists have prepared various artificial solid nanoscale channels by various frontiers of physicochemical technology. The vertical ordered silica nanochannel is a new solid nano channel, which is prepared. The method is simple, reproducible and stable in physical and chemical properties. In this paper, the transport of molecules in silica nanoscale and the load of electroactive substances in silica nanochannels are studied on the basis of ordered silica nanoscale. The work of this paper is as follows: Based on the surface properties of the two oxygenated silicon nanochannels, the two oxygen is studied. Selective permeability of silicon nanoscale thin films. The surface of silicon dioxide nano channel with hydroxyl group, isoelectric point is 2-3, the surface of silicon dioxide with negative charge in pH more than 3. Three kinds of probe molecules with different charge are used as an example to investigate the effect of surface charge on the transport of molecules in nanoscale. By modifying the amine group, two oxidation is made. In addition, the diameter of the silicon dioxide nanopore is 2-3 nm, and the surface double layer overlaps on the nanoscale. Under the low ion intensity, the molecules with the same charge with the silicon dioxide surface are transmitted in the channel. The AND logic gate is constructed by the rectification effect of the mercaptan two ferrocene molecular self assembled film on the gold electrode. First, the thiol two ferrocene molecules are assembled on the surface of the gold electrode containing the vertical silicon dioxide nanoscale membrane. The oxidation potential of the thiol two ferrocene molecule is higher than the potassium ferrocyanide (Fe (CN) 64-) probe molecule in the solution. This produces an anode rectifier. The degree of rectification is evaluated by the ratio of the peak current to the anode peak current. When the cathode peak current disappears, the rectification effect is completely rectified. It is found that the rectification effect of the thiol two ferrocene is becoming more and more obvious with the increase of the concentration of Fe (CN) 64-. The amount of Fe (CN) 64- that can enter the silica nanoscale and thiol two ferrocene is controlled by the electrolyte concentration. With the concentration of Fe (CN) 64-, the rectifying effect becomes more and more obvious with the increase of the concentration of electrolyte. When the concentration of NaClO4 is close to 0.1 M, Fe (CN) 64- can enter the silicon dioxide nanoscale freely. The AND logic gate was constructed with the influence of probe molecules and electrolyte concentration on the rectifying effect of thiol two ferrocene. Polyaniline mesoporous silica nanocomposites were prepared. The silica was a hard template with nano channels perpendicular to the surface of the electrode and deposited in the channel by electrochemical polymerization. Aniline, by adjusting the time of electropolymerization and the concentration of aniline monomer, can control the electropolymerization of aniline only in the silica nanoscale. The polyaniline mesoporous silica composite has a good catalytic activity against the electrochemical oxidation of AA, and can be used for the quantitative analysis of AA and the oxidation of peak power in the range of 0.1-1.0mM. The flow has a good linear relationship with the concentration of AA. The complex can also be used as a pH sensor, and the electrode potential in the pH 3~9 range is in the nerster response to pH. The load of metal nanoparticles in the silica nanochannel and its electrocatalytic and electroanalytical properties are investigated. By modifying the two oxygen silicon channel, it can be used with the metal precursor. The metal precursor is introduced into the silica channel by the group of the interaction. Finally, the metal precursor in the silicon dioxide channel is reduced to a metal nanoparticle by chemical reduction. The amino group that can be used in the electrostatic attraction with the gold precursor is modified by modifying the mesoporous silica channel. On the basis of the third chapter, on the basis of the work of the third chapter, two active groups of Polyaniline and platinum nanoparticles are introduced in the silica channel by the interaction of the platinum precursor and the tertiary amine in the polyaniline framework. The composite has good electrocatalytic activity and can be used to detect the wide concentration. The H2O2 in the range (1 M-2.0 mM) has a high sensitivity (50 A mM-1) and a lower detection limit (0.24 M, S/N=3).
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:O613.72;TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何武強(qiáng),何寶林,陳益賢,廖小娟,劉漢范;溶劑穩(wěn)定的鈀金屬納米顆粒的制備[J];中南民族大學(xué)學(xué)報(自然科學(xué)版);2004年04期
2 杜天倫;楊修春;黃文e,
本文編號:1854705
本文鏈接:http://www.lk138.cn/kejilunwen/cailiaohuaxuelunwen/1854705.html
最近更新
教材專著