納米結(jié)構(gòu)在太陽電池上的新應(yīng)用研究
發(fā)布時間:2018-05-05 13:11
本文選題:硅基異質(zhì)結(jié) + 光場調(diào)控; 參考:《上海交通大學(xué)》2015年博士論文
【摘要】:光伏發(fā)電是解決人類能源需求和維持可持續(xù)發(fā)展的重要途徑。在不斷推動太陽電池效率提升的進程中,納米結(jié)構(gòu)在器件上的應(yīng)用已經(jīng)展示出了巨大的潛力,成為了近年來備受關(guān)注的研究熱點。由于納米結(jié)構(gòu)獨特的光學(xué)、電學(xué)、材料特性,其在優(yōu)化太陽電池的減反陷光、載流子輸運、結(jié)構(gòu)設(shè)計等方面都有廣泛的利用價值?梢灶A(yù)見,對納米結(jié)構(gòu)的深入研究和深化應(yīng)用將繼續(xù)主導(dǎo)第三代高效太陽電池的開發(fā)和推廣。然而值得注意的是,納米結(jié)構(gòu)在太陽電池上的應(yīng)用仍然是一個較新的領(lǐng)域,還不斷涌現(xiàn)著大量的新結(jié)構(gòu)被提出、研究、并最終提升電池的效率。目前對納米結(jié)構(gòu)的使用形式一般還停留在對電池單一的光學(xué)或電學(xué)性能的優(yōu)化,因此基本都是在傳統(tǒng)電池框架范圍內(nèi)的某種延伸。在這種條件下,具有納米結(jié)構(gòu)的太陽電池多數(shù)仍然受制于普通電池的結(jié)構(gòu)缺陷和理論效率極限,特別是再考慮到納米結(jié)構(gòu)對表面復(fù)合等因素的不利影響,使得實際的效率提升空間被大大壓縮。顯然,還需要不斷挖掘該類電池的潛力來實現(xiàn)真正的效率突破。在本文中,我們著重從理論模擬的角度來探究納米結(jié)構(gòu)在光伏器件上可能的新應(yīng)用形式,試圖加深對其特定性質(zhì)的理解并拓展其功能的范疇。首先,我們提出了在硅基異質(zhì)結(jié)電池前表面引入周期性納米柱陣列,通過其對短波光場的調(diào)制來改善電池內(nèi)量子效率的方式。我們發(fā)現(xiàn),通過適當(dāng)?shù)目刂脐嚵械慕Y(jié)構(gòu)參量,可以使入射光激發(fā)柱中的共振腔模和陣列的導(dǎo)模,使得光場的較強處、即電池的吸收前沿有效地從高缺陷的非晶硅層轉(zhuǎn)移到低缺陷的單晶硅中,大大提高了載流子的收集效率,并最終提升電池在該波段的短路電流達38%以上。該結(jié)果啟發(fā)了一種新的光學(xué)-電學(xué)綜合式的效率提升途徑。其次,我們研究了單根豎直納米線這一新概念電池的光電特性以及其對平面宏觀器件理論極限的突破潛力。我們首次指出了其光學(xué)行為可以由可見光波段的介質(zhì)共振天線來描述,填補了之前理論無法定量分析的缺陷。在此基礎(chǔ)上,我們發(fā)現(xiàn)通過適當(dāng)選擇基模激發(fā)的峰位,并引入背反射面,可以使其內(nèi)建聚光達到最大的21倍,進而使其開路電壓超過shockley-queisser極限達124mv;另一方面,由于其漏模共振的吸收機制,該類電池的載流子產(chǎn)生主要集中在中部本征層中而非表面高缺陷層中,使得其具有高于平面結(jié)構(gòu)的輸運能力以及對缺陷復(fù)合的高耐受性。最終其效率超過平面極限達33%以上。最后,我們將上述的單根豎直納米線電池推廣到了宏觀器件的情形。我們發(fā)現(xiàn)在將其組裝為二維陣列時,兩個關(guān)鍵的因素是維持單個基元電池的內(nèi)建聚光以及基元共振腔陷光和陣列光子學(xué)陷光的互補式設(shè)計。為此,我們提出使用同軸介質(zhì)包覆層來實現(xiàn)共振腔模式的調(diào)控,以取代傳統(tǒng)的半徑調(diào)控方式。最終,我們展示了轉(zhuǎn)換效率高于平面極限達30%以上的宏觀光伏器件,為下一代高效電池的設(shè)計提供了全新的思路。
[Abstract]:Photovoltaic power generation is an important way to solve the human energy demand and sustain the sustainable development. In the process of promoting the efficiency of solar cell efficiency, the application of nanostructures on the devices has shown great potential. It has become a hot research focus in recent years. Due to the unique optical, electrical, material properties of the nanostructures, It can be widely used in optimizing the sunk sunk, carrier transport, structure design and so on. It is foreseeable that the in-depth study and further application of nanostructures will continue to dominate the development and popularization of the third generation high efficiency solar cells. However, it is worth noting that the application of nanostructures to solar cells is still the same. A new field, and a large number of new structures are emerging, studied, and ultimately improved the efficiency of the battery. The current use of nanostructures generally remains in the optimization of the single optical or electrical properties of the battery, so it is basically a kind of extension within the traditional battery frame range. Under this condition, it is available. Most of the nanoscale solar cells are still subject to the structural defects and theoretical efficiency limits of ordinary batteries, especially considering the adverse effects of nanostructures on surface composite factors, making the actual efficiency space greatly compressed. It is clear that the potential of this type of battery needs to be continuously excavated to achieve real efficiency breakthroughs. In this paper, we focus on exploring the possible new applications of nanostructures on photovoltaic devices from the theoretical point of view, trying to deepen the understanding of their specific properties and expand their functions. First, we introduce the introduction of periodic nanoscale arrays on the surface of the silicon based heterojunction battery, and the modulation of the short wave field through its modulation. In order to improve the quantum efficiency in the battery, we find that the appropriate control of the structure parameters of the array can make the resonant cavity mode and the guide mode of the array in the incident light excitation, so that the stronger of the light field, that is, the absorption frontier of the battery is effectively transferred from the highly defective amorphous silicon layer to the low defect monocrystalline silicon, which greatly improves the load. The efficiency of the collection of the flow is more than 38%. The results illuminate a new optical and electrical comprehensive efficiency improvement approach. Secondly, we have studied the photoelectric characteristics of the new concept battery, a single vertical nanowire, and the breakthrough potential for the theoretical limit of the flat surface macro devices. For the first time, we point out that the optical behavior of the medium can be described by the dielectric resonance antenna in the visible light band and fills the defect that the previous theory can't analyze quantitatively. On this basis, we find that by selecting the peak position of the base mode excitation and introducing the back reflector, the inner building can reach the maximum of 21 times, and then the open circuit voltage can be exceeded. The over Shockley-Queisser limit is 124mv; on the other hand, due to the absorption mechanism of the leaky mode resonance, the carrier generation of this type of battery is mainly concentrated in the central intrinsic layer rather than the surface high defect layer, making it have higher transport capacity than the plane structure and the high tolerance to the defect compound. Finally, the efficiency exceeds the plane limit of 33. In the end, we generalized the above single vertical nanowire cells to the macro devices. We found that the two key factors to be assembled into a two-dimensional array are the maintenance of the built-in light of a single element cell and the complementary design of the resonant cavity and the array photonics. The coaxial dielectric coating is used to control the resonant cavity mode to replace the traditional radius control mode. Finally, we show that the conversion efficiency is higher than the plane limit of more than 30% of the macro photovoltaic devices, which provides a new way of thinking for the design of the next generation efficient battery.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TB383.1;TM914.4
【相似文獻】
相關(guān)期刊論文 前2條
1 肖立新;蘇仕健;阿形yP也;藍杏林;城戶淳二;;弱電子傳輸材料實現(xiàn)100%內(nèi)量子效率的有機藍色磷光[J];激光與光電子學(xué)進展;2010年03期
2 ;[J];;年期
相關(guān)博士學(xué)位論文 前1條
1 曾洋;納米結(jié)構(gòu)在太陽電池上的新應(yīng)用研究[D];上海交通大學(xué);2015年
相關(guān)碩士學(xué)位論文 前1條
1 韓效亞;AlGaInP黃綠光LED內(nèi)量子效率提高的研究[D];長春理工大學(xué);2012年
,本文編號:1847818
本文鏈接:http://www.lk138.cn/kejilunwen/cailiaohuaxuelunwen/1847818.html
最近更新
教材專著