半導(dǎo)體@碳納米材料的制備及其光熱性能研究
本文選題:太陽能 + 光熱轉(zhuǎn)換 ; 參考:《青島科技大學(xué)》2017年碩士論文
【摘要】:化石能源危機(jī)及環(huán)境污染的加劇,使得人類對可再生清潔能源的需求與日俱增。太陽能光熱轉(zhuǎn)換是利用光熱轉(zhuǎn)換材料將太陽光轉(zhuǎn)換為熱能的技術(shù)。太陽光譜是包含紫外-可見-紅外光的寬光譜,若想實(shí)現(xiàn)對太陽能的高效利用,制備太陽光寬光譜吸收的材料是關(guān)鍵。為此,本文制備了氧化錫銻(ATO)@C和Fe_3O_4@C納米材料,并研究了其光吸收和光熱轉(zhuǎn)換性能。以葡萄糖為碳源,一縮二乙二醇(DEG)為溶劑,利用高溫回流法制備了ATO@C/DEG納米流體。研究了葡萄糖加入量、ATO加入量和反應(yīng)時(shí)間等因素對ATO@C納米結(jié)構(gòu)的形貌、分散程度,以及對納米流體光吸收和光熱轉(zhuǎn)換性能的影響。結(jié)果表明:在ATO與葡萄糖摩爾比為5:3時(shí),ATO@C/DEG納米流體具有最佳的分散程度和最佳的寬光譜吸收效果;此比例下的納米流體隨濃度的增加太陽能加權(quán)吸收系數(shù)(8))逐漸增加,3 mg/m L的納米流體在1 cm光程下8)達(dá)到最大值99.3%;此濃度下的ATO@C/DEG納米流體具有最高的太陽能利用效率,為97.0%,即納米流體吸收的太陽光絕大部分均已轉(zhuǎn)化成為熱量。以二茂鐵為鐵源,H_2O_2為氧化劑,丙酮為溶劑,采用溶劑熱法制備了Fe_3O_4@C納米顆粒,將此顆粒分散至乙二醇(EG)中制備了Fe_3O_4@C/EG納米流體。研究了二茂鐵加入量、H_2O_2加入量、反應(yīng)時(shí)間和反應(yīng)溫度等因素對產(chǎn)物的形貌、結(jié)構(gòu),以及對納米流體光吸收和光熱轉(zhuǎn)換性能的影響。結(jié)果表明:在180 oC下,加入0.15g二茂鐵和2.5 m L的H_2O_2,反應(yīng)72 h后得到的納米顆粒具有較規(guī)整的形貌和最佳的寬光譜吸收效果;Fe_3O_4@C/EG納米流體隨濃度的增加8)逐漸增加,0.4mg/m L的納米流體在1 cm光程下8)達(dá)到最大值99.8%;此濃度下的Fe_3O_4@C/EG納米流體具有最高的太陽能利用效率,為83.5%。將ATO@C和Fe_3O_4@C納米顆粒作為光熱轉(zhuǎn)換材料負(fù)載至濾紙上進(jìn)行水蒸發(fā)測試,研究了不同負(fù)載量對光吸收效果、水蒸發(fā)速率和熱效率的影響。在氙燈(1 KW·m~(-2))照射下隨負(fù)載量的增加水蒸發(fā)速率和熱效率增加,最大水蒸發(fā)速率分別為1.39 kg·m~(-2)·h~(-1)和1.22 kg·m~(-2)·h~(-1),較純水蒸發(fā)速率分別增加0.96 kg·m~(-2)·h~(-1)和0.79 kg·m~(-2)·h~(-1);熱效率分別為95.04%和83.16%,較水熱效率分別增加65.82%和53.94%。ATO@C和Fe_3O_4@C納米顆粒在水蒸發(fā)方向展現(xiàn)出的優(yōu)異性能在未來的海上溢油處理、海水淡化方面將會有很廣泛的應(yīng)用前景。
[Abstract]:Because of the crisis of fossil energy and the aggravation of environmental pollution, the demand for renewable clean energy is increasing day by day. Solar photothermal conversion is a technology to convert solar light into heat energy by means of photothermal conversion materials. The solar spectrum is a wide spectrum containing UV-Vis-IR light. If we want to make efficient use of solar energy, it is the key to prepare the material for the absorption of wide spectrum of solar light. In this paper, tin antimony oxide antimony oxide (ATO) @ C and Fe_3O_4@C nanomaterials have been prepared, and their optical absorption and photothermal conversion properties have been studied. Using glucose as carbon source and diethylene glycol (DEG) as solvent, ATO@C/DEG nanofluids were prepared by high temperature reflux method. The effects of glucose addition and reaction time on the morphology, dispersion, photoabsorption and photothermal conversion of ATO@C nanostructures were studied. The results show that ATOBY C / DEG nanofluids have the best dispersion degree and the best wide-spectrum absorption effect when the molar ratio of ATO to glucose is 5:3. With the increase of the concentration of nano-fluid, the weighted absorption coefficient of solar energy increased gradually, and the nano-fluid with 3 mg/m L reached the maximum value of 99.3 at 1 cm light path, and the ATO@C/DEG nanofluid at this concentration had the highest solar energy utilization efficiency. The solar light absorbed by nanofluids has been converted into heat. Using ferrocene as Tie Yuan H _ 2O _ 2 as oxidant and acetone as solvent, Fe_3O_4@C nanoparticles were prepared by solvothermal method and dispersed into ethylene glycol (EGG) to prepare Fe_3O_4@C/EG nanoparticles. The effects of the addition amount of ferrocene on the morphology, structure, photoabsorption and photothermal conversion of nanofluids were investigated, such as the addition of H _ 2O _ 2, reaction time and reaction temperature. The results show that: at 180oC, Adding 0.15g ferrocene and 2.5 mL H _ 2O _ 2, the results of 72 h reaction show that the nanocrystalline particles have more regular morphology and the best absorption effect of wide spectrum. Fe3O _ 4C / EG nano-fluid increases gradually with the increase of 8) and the nano-fluid of 0.4mgmL increases in 1 cm light. The Fe_3O_4@C/EG nanoscale fluid at this concentration has the highest solar energy efficiency. For 83.5. ATO@C and Fe_3O_4@C nanoparticles were loaded on filter paper as photothermal conversion materials for water evaporation test. The effects of different loading amounts on light absorption, water evaporation rate and thermal efficiency were studied. The water evaporation rate and thermal efficiency increased with the increase of the loading amount under the irradiation of Xenon lamp (1 KW / m ~ (-2)). The maximum evaporation rate of water was 1.39 kg / m ~ (-2) h ~ (-1) and 1.22 kg / m ~ (-2) / h ~ (-1), 0.96 kg / m ~ (-2) / h ~ (-1) and 0.79 kg / min ~ (-2) h ~ (-1), respectively, and the thermal efficiency was 95.04% and 83.16%, respectively, which was 65.82% higher than that of water thermal efficiency, and the 53.94%.ATO@C and Fe_3O_4@C nanoparticles showed excellent evaporation performance in the direction of water evaporation. Performance in the future offshore oil spill treatment, Seawater desalination will have a wide application prospect.
【學(xué)位授予單位】:青島科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB383.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 保繼棟;張靖庚;;太陽能光熱發(fā)電專利分析研究[J];甘肅科技;2015年14期
2 王光偉;楊旭;葛穎;許書云;張巍;;太陽能光化學(xué)利用方式及應(yīng)用評述[J];半導(dǎo)體光電;2015年01期
3 熊德華;陳煒;李宏;;太陽能光熱轉(zhuǎn)化選擇性吸收涂層研究進(jìn)展[J];科技導(dǎo)報(bào);2014年09期
4 張霖;趙騰;陳大鵬;周佳南;干蜀毅;陳長琦;;太陽能選擇性吸收薄膜研究進(jìn)展及展望[J];真空;2013年03期
5 李鎮(zhèn)祥;趙劍曦;;溶膠-凝膠法制備太陽光譜選擇性吸收薄膜的研究進(jìn)展[J];硅酸鹽學(xué)報(bào);2012年05期
6 李超;許志龍;;太陽能光電—光熱復(fù)合系統(tǒng)關(guān)鍵技術(shù)研究[J];能源與環(huán)境;2011年04期
7 魏葳;駱仲泱;趙佳飛;壽春暉;張艷梅;武婷婷;倪明江;;太陽能光電-光熱綜合利用系統(tǒng)[J];上海節(jié)能;2010年05期
8 倪明江;駱仲泱;壽春暉;王濤;趙佳飛;岑可法;;太陽能光熱光電綜合利用[J];上海電力;2009年01期
9 張建榮,高濂;納米晶SnO_2粉體的合成[J];無機(jī)化學(xué)學(xué)報(bào);2003年06期
10 都有為;;納米磁性材料及其應(yīng)用[J];材料導(dǎo)報(bào);2001年07期
相關(guān)碩士學(xué)位論文 前1條
1 吳剛;納米四氧化三鐵靶向藥物的制備及其抗腫瘤活性研究[D];南京理工大學(xué);2014年
,本文編號:1842439
本文鏈接:http://www.lk138.cn/kejilunwen/cailiaohuaxuelunwen/1842439.html