中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁(yè) > 科技論文 > 材料論文 >

微弧區(qū)間脈沖參量對(duì)Ti及TiN薄膜微觀形貌及硬度的影響

發(fā)布時(shí)間:2018-05-03 09:53

  本文選題:強(qiáng)輝弱弧放電區(qū)間 + 高功率脈沖電源。 參考:《西安理工大學(xué)》2017年碩士論文


【摘要】:根據(jù)氣體放電雙峰曲線中伏安特性處于“歐姆-反歐姆”過(guò)渡區(qū)間時(shí),其電子遷移通量將數(shù)十倍于磁控濺射離子鍍、靶電壓數(shù)倍于多弧離子鍍這一特性。借助脈沖電源模式構(gòu)建出依靠寬脈沖強(qiáng)電離電場(chǎng)使真空腔內(nèi)滿足強(qiáng)輝弱弧的放電環(huán)境,并通過(guò)脈沖參量的調(diào)控將氣體放電維持在強(qiáng)輝弱弧區(qū)間的不同階段;诖酥苽浼兘饘賂i薄膜及化合物TiN薄膜,并利用SEM、AFM、XRD、TEM、納米壓痕儀等檢測(cè)手段,對(duì)薄膜組織形貌、晶體結(jié)構(gòu)及顯微硬度進(jìn)行表征,以探索脈沖環(huán)境下鍍料粒子能量大小及粒子沉積行為對(duì)薄膜生長(zhǎng)過(guò)程及性能的影響規(guī)律。實(shí)驗(yàn)發(fā)現(xiàn):對(duì)純金屬Ti薄膜而言,隨著脈沖持續(xù)時(shí)間的增加,其表面形貌由球狀團(tuán)簇逐漸轉(zhuǎn)變?yōu)槭杷傻睦饨菭钌L(zhǎng),其截面形貌由纖細(xì)的柱狀過(guò)渡為疏松的枝晶結(jié)構(gòu)。同時(shí),顆粒尺寸急劇增大,薄膜平整度及硬度值均降低。脈沖峰值電流的增大對(duì)薄膜形貌并未產(chǎn)生顯著影響,但在一定程度上起到細(xì)化晶粒的作用。薄膜粗糙度值均維持在4nm以下。與此同時(shí),峰值電流的增大促使沉積速率有效提升。從薄膜的物相分析結(jié)果可以看出,脈沖持續(xù)時(shí)間及峰值電流的增加均使得薄膜的結(jié)晶度有所提高且擇優(yōu)取向面也隨之發(fā)生轉(zhuǎn)變。從純Ti薄膜的微觀結(jié)構(gòu)可以看出,脈沖持續(xù)時(shí)間為1.6 ms時(shí)薄膜中存在晶粒尺寸小于10nm納米晶。脈沖持續(xù)時(shí)間越小,薄膜的硬度值越高(約為6.741GPa)。脈沖峰值電流處于15 A-30 A之間時(shí)存在硬度的最大值(約為7.203 GPa)。對(duì)于化合物TiN薄膜而言,脈沖持續(xù)時(shí)間與峰值電流的增加并未改變薄膜的形貌,均為典型的(111)面三角錐結(jié)構(gòu)。兩種參量的增加均使得薄膜的晶化程度有所提升,且薄膜沿(111)晶面擇優(yōu)生長(zhǎng)的趨勢(shì)逐漸增強(qiáng)。在一定程度上,隨著峰值電流的增加,薄膜截面形貌出現(xiàn)近似熔融現(xiàn)象,使得膜層晶粒尺寸及粗糙度值降低,薄膜趨于致密化。同樣,脈沖持續(xù)時(shí)間越小(2 ms),TiN薄膜硬度值越高(約為23.325 GPa)。脈沖峰值電流的改變對(duì)TiN薄膜的硬度變化影響不大,其值均在20-24 GPa波動(dòng)。以上現(xiàn)象表明:氣體放電位于強(qiáng)輝弱弧區(qū)間時(shí),在較小的脈沖持續(xù)時(shí)間下,薄膜的成核速率大于生長(zhǎng)速率。此時(shí),薄膜顆粒尺寸小而均勻,且致密性好,力學(xué)性能較好。同時(shí),存在合適的峰值電流變化范圍,既可以提高沉積速率又能進(jìn)一步優(yōu)化薄膜形態(tài)及性能。
[Abstract]:According to the fact that the volt-ampere characteristic of the gas discharge bimodal curve is in the "ohm-anti-ohmic" transition region, the electron transport flux will be several times higher than that of magnetron sputtering ion plating, and the target voltage will be several times higher than that of multi-arc ion plating. With the help of the pulse power supply mode, the discharge environment of the vacuum cavity with strong ionization electric field is constructed, and the gas discharge is maintained at different stages of the strong glow and weak arc region through the control of pulse parameters. Based on this method, pure metal Ti thin films and compound TiN thin films were prepared. The microstructure, crystal structure and microhardness of the thin films were characterized by means of SEM AFM XRDX TM and nano-indentation instrument. The effects of particle energy and particle deposition behavior on the growth process and properties of the films were investigated. It is found that the surface morphology of pure Ti thin film changes from spherical cluster to loose angular growth with the increase of pulse duration, and the cross-section morphology changes from fine columnar to loose dendritic structure. At the same time, the particle size increases sharply and the film smoothness and hardness decrease. The increase of pulse peak current has no significant effect on the morphology of the film, but to some extent, it plays the role of grain refinement. The roughness values of the films are kept below 4nm. At the same time, the increase of peak current promotes the deposition rate effectively. The results of phase analysis show that the increase of pulse duration and peak current make the crystallinity of the film increase and the preferred orientation surface change with the increase of pulse duration and peak current. It can be seen from the microstructure of pure Ti film that the grain size of the film is smaller than that of 10nm nanocrystalline when the pulse duration is 1.6 Ms. The lower the pulse duration, the higher the hardness of the film (about 6.741 GPA). When the pulse peak current is between 15 and 30 A, there is a maximum hardness (about 7.203 GPA). For compound TiN films, the increase of pulse duration and peak current does not change the morphology of the films, and they all belong to the typical triangular cone structure. With the increase of the two parameters, the crystallization degree of the films is increased, and the preferential growth along the crystal plane of the films increases gradually. To a certain extent, with the increase of peak current, the cross-section morphology of the film appears approximately melting phenomenon, which makes the grain size and roughness value of the film decrease, and the film tends to densify. Similarly, the higher the pulse duration is, the higher the hardness of tin films is (about 23.325 GPA). The change of pulse peak current has little effect on the hardness of TiN film, and its values fluctuate from 20 to 24 GPa. The above results show that the nucleation rate of the film is larger than the growth rate when the gas discharge is in the region of strong glow and weak arc and the pulse duration is small. At this time, the particle size of the film is small and uniform, and the film has good compactness and good mechanical properties. At the same time, there is a suitable range of peak current variation, which can not only increase the deposition rate, but also further optimize the morphology and properties of the films.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB306;TB383.2

【參考文獻(xiàn)】

相關(guān)期刊論文 前9條

1 李小嬋;柯培玲;劉新才;汪愛(ài)英;;復(fù)合高功率脈沖磁控濺射Ti的放電特性及薄膜制備[J];金屬學(xué)報(bào);2014年07期

2 田穎萍;范洪遠(yuǎn);成靖文;;氮?dú)辶髁勘葘?duì)磁控濺射TiN薄膜生長(zhǎng)織構(gòu)的影響[J];表面技術(shù);2012年03期

3 王軍生;童洪輝;趙嘉學(xué);戴彬;;電源工作模式對(duì)中頻磁控濺射沉積速率的影響[J];真空;2009年01期

4 張雅婷;徐章程;李菲暉;;Si基上電沉積Cu薄膜的形貌與擇優(yōu)取向[J];人工晶體學(xué)報(bào);2006年04期

5 程丙勛;吳衛(wèi)東;何智兵;許華;唐永建;盧鐵城;;濺射功率對(duì)直流磁控濺射Ti膜結(jié)構(gòu)的影響[J];強(qiáng)激光與粒子束;2006年06期

6 徐萬(wàn)勁;磁控濺射技術(shù)進(jìn)展及應(yīng)用(下)[J];現(xiàn)代儀器;2005年06期

7 趙新民,狄國(guó)慶,朱炎;外加磁場(chǎng)對(duì)磁控濺射靶利用率的影響[J];真空科學(xué)與技術(shù);2003年02期

8 趙越,劉實(shí),汪偉,郝萬(wàn)立,王隆保,李依依;納米晶鈦薄膜的制備及結(jié)構(gòu)分析[J];原子能科學(xué)技術(shù);2002年Z1期

9 李河清,蔡s,

本文編號(hào):1838030


資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/kejilunwen/cailiaohuaxuelunwen/1838030.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶78851***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com