基于汽車產業(yè)鏈協(xié)同SaaS平臺的購車推薦系統(tǒng)及技術研究
本文選題:推薦系統(tǒng) + SaaS; 參考:《西南交通大學》2015年碩士論文
【摘要】:隨著信息技術的飛速發(fā)展以及SaaS(軟件即服務,software as service)模式的越發(fā)成熟,越來越多的中小型企業(yè)加入到信息化的大軍中。汽車產業(yè)鏈協(xié)同SaaS平臺為中小型汽車制造業(yè)提供第三方的信息服務平臺,提升企業(yè)的信息化程度,提供了信息化的可靠保證。汽車產業(yè)鏈協(xié)同SaaS平臺上注冊企業(yè)超過了8000家,平臺運營商為企業(yè)間的業(yè)務提供了方便,但平臺方僅僅為租戶提供B2B的業(yè)務信息化是遠遠不夠的。針對于汽車產業(yè)鏈協(xié)同SaaS平臺上租戶日益增長的業(yè)務需求以及平臺自身的發(fā)展,本文在對原有平臺功能與數據研究的基礎上,提出了建立基于汽車產業(yè)鏈協(xié)同SaaS平臺的購車推薦系統(tǒng),為實現系統(tǒng)的功能,本文主要研究包括了以下幾個方面。(1)論文先對汽車產業(yè)鏈協(xié)同SaaS平臺由B2B模式向B2C模式發(fā)展的必要性與可行性進行分析,提出了建立基于平臺的購車推薦系統(tǒng)的需求。(2)對基于汽車產業(yè)鏈協(xié)同SaaS平臺的購車推薦系統(tǒng)的參與用戶所需功能進行了分析,針對每一類用戶提出了系統(tǒng)的功能。對實現系統(tǒng)的關鍵性技術:個性化推薦以及系統(tǒng)信息集成技術進行了分析,確定了系統(tǒng)關鍵技術的解決方案。(3)為了實現系統(tǒng)數據與平臺數據的集成交互,本文使用了數據庫服務器的觸發(fā)器與作業(yè)相結合的策略。該策略同時針對了系統(tǒng)向平臺的數據交互以及平臺向系統(tǒng)進行的數據集成。(4)為實現對消費者的個性化推薦,本文分析了當下比較流行了推薦技術,選取了基于聚類的協(xié)同過濾方法,并對該方法進行了實現。(5)最后,論文通過采用三層架構的B/S模式,實現了基于汽車產業(yè)鏈協(xié)同SaaS平臺的購車推薦系統(tǒng)的主要業(yè)務功能模塊,并對上述問題的實現進行了詳細說明。在論文最后進行了論文工作和后續(xù)的改進方向的總結。
[Abstract]:With the rapid development of information technology and the maturity of SaaS (software as service) model, more and more small and medium-sized enterprises join the army of information technology. The collaborative SaaS platform of automobile industry chain provides the third party information service platform for the small and medium-sized automobile manufacturing industry, promotes the informationization degree of the enterprise, and provides the reliable guarantee of the informationization. There are more than 8000 registered enterprises in the automobile industry chain cooperative SaaS platform. The platform operators provide convenience for the business between enterprises, but it is far from enough for the platform only to provide B2B business informatization for the tenants. In view of the increasing business demand of tenants and the development of the platform itself on the collaborative SaaS platform of automobile industry chain, this paper studies the function and data of the original platform. In order to realize the function of the system, a car purchase recommendation system based on collaborative SaaS platform of automobile industry chain is proposed. This paper mainly includes the following aspects. 1) the necessity and feasibility of the development of collaborative SaaS platform from B2B model to B2C mode are analyzed in this paper. The requirement of establishing a platform-based car purchase recommendation system is put forward. The functions of the participating users of the vehicle purchase recommendation system based on the collaborative SaaS platform of the automobile industry chain are analyzed, and the functions of the system are proposed for each class of users. The key technology to realize the system: personalized recommendation and system information integration technology are analyzed, and the solution of the key technology of the system is determined. In order to realize the integration and interaction between the system data and the platform data, This article uses the database server trigger and the job union strategy. This strategy also aims at the data interaction from the system to the platform and the data integration from the platform to the system. In order to realize the personalized recommendation to consumers, this paper analyzes the popular recommendation technology. This paper selects the collaborative filtering method based on clustering, and implements the method. Finally, the paper realizes the main business function module of the car purchase recommendation system based on the collaborative SaaS platform of automobile industry chain by adopting the three-tier structure of B / S mode. The realization of the above problems is explained in detail. At the end of the paper, the author summarizes the work of the paper and the direction of improvement in the future.
【學位授予單位】:西南交通大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TP311.52;TP391.3
【參考文獻】
相關期刊論文 前10條
1 邢春曉;高鳳榮;戰(zhàn)思南;周立柱;;適應用戶興趣變化的協(xié)同過濾推薦算法[J];計算機研究與發(fā)展;2007年02期
2 黃曉濤;數據庫觸發(fā)器實現數據庫系統(tǒng)的主動功能[J];計算機應用研究;1999年09期
3 賀玲;吳玲達;蔡益朝;;數據挖掘中的聚類算法綜述[J];計算機應用研究;2007年01期
4 方東;;SAAS與中國中小企業(yè)信息化[J];科技信息(科學教研);2007年14期
5 翟東海;魚江;高飛;于磊;丁鋒;;最大距離法選取初始簇中心的K-means文本聚類算法的研究[J];計算機應用研究;2014年03期
6 鄧愛林,朱揚勇,施伯樂;基于項目評分預測的協(xié)同過濾推薦算法[J];軟件學報;2003年09期
7 王宇;王淑營;;面向汽車產業(yè)鏈協(xié)同SaaS平臺的DaaS技術研究[J];計算機工程與設計;2014年03期
8 白娟;布輝;;基于Web挖掘的智能商務推薦[J];微計算機信息;2010年21期
9 魏育成,王耀南,資剛;MS SQL SERVER數據庫觸發(fā)器技術的實際應用[J];計算機系統(tǒng)應用;2000年05期
10 吳春旭;李佳俊;石輝;;一種基于分眾分類的協(xié)同過濾推薦算法[J];計算機系統(tǒng)應用;2010年05期
相關博士學位論文 前1條
1 范黎林;基于產業(yè)鏈協(xié)作平臺的商務智能架構及數據挖掘技術研究[D];西南交通大學;2009年
,本文編號:1967729
本文鏈接:http://lk138.cn/jingjilunwen/chanyejingjilunwen/1967729.html