基于稀疏約束的高光譜解混技術(shù)研究
[Abstract]:With the development of remote sensing technology and imaging spectrometer, hyperspectral remote sensing image has been applied in more and more fields. However, due to its low spatial rate and the complexity of the distribution of ground objects, a pixel is usually made up of several ground objects, which seriously hinders the practical application of hyperspectral images. Therefore, it is particularly meaningful to decompose hyperspectral images with mixed pixels. At present, in the field of research, new methods and new ideas emerge endlessly at home and abroad. The problem of hyperspectral descrambling based on sparse constraints has become a hot spot in the field of remote sensing. It is a sparse regression problem. The goal is to find the optimal spectral subset which can represent the pixel in a large spectral database. However, there are still some shortcomings, such as not using spatial information of images. Based on the previous research results, this paper makes a lot of research on mixed pixel decomposition of hyperspectral images based on sparse constraints. The main research contents are as follows: firstly, the hyperspectral linear and nonlinear mixed models are described, and the basic steps of linear unmixing are introduced. The number estimation algorithm, the end component extraction algorithm and the abundance inversion algorithm are introduced one by one. Then, the hyperspectral demultiplexing model based on sparse constraint is described in detail. It assumes that the mixed pixel can be represented as a linear combination of the spectral curves in a known spectral library. In this way, unmixing is equivalent to finding the best subset of the spectrum library that can represent the pixel in the spectral library. The sparse unmixing problem is essentially an optimization problem of L _ 0 norm. In general, the L _ 0 norm minimization problem is transformed into a L1 norm minimization problem. In this paper, variable splitting and augmented Lagrangian algorithm are used for sparse demultiplexing, which is a very fast method, and its regularization parameters and penalty parameters are studied in order to obtain a relatively optimal parameter. The influence of cross-correlation function value (MC) of spectral library on the results of descrambling is analyzed through simulation experiments. The general conclusion is drawn that the smaller the cross-correlation function value MC of spectral library matrix, the better the effect of sparse demultiplexing. Finally, the weighted L 1 regularized sparse demultiplexing model is studied, which is closer to L 0 norm than L 1 norm. Aiming at the problem that it only considers the optimization in mathematical sense and does not make use of the actual distribution of ground objects, a weighted L1 regularized sparse demultiplexing algorithm based on modified weights is proposed, and spatial information is introduced into the iterative updating process of weights. The experimental results show that the improved weighted L1 regularized sparse demultiplexing algorithm can effectively improve the resolution of hyperspectral images with lower SNR.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TP751
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王立國(guó);王群明;劉丹鳳;吳永慶;;基于幾何估計(jì)的光譜解混方法[J];紅外與毫米波學(xué)報(bào);2013年01期
2 趙春暉;成寶芝;楊偉超;;利用約束非負(fù)矩陣分解的高光譜解混算法[J];哈爾濱工程大學(xué)學(xué)報(bào);2012年03期
3 趙春暉;齊濱;王玉磊;;一種改進(jìn)的N-FINDR高光譜端元提取算法[J];電子與信息學(xué)報(bào);2012年02期
4 吳澤彬;韋志輝;孫樂;劉建軍;;基于迭代加權(quán)L1正則化的高光譜混合像元分解[J];南京理工大學(xué)學(xué)報(bào);2011年04期
5 王立國(guó);鄧祿群;張晶;;基于線性最小二乘支持向量機(jī)的光譜端元選擇算法[J];光譜學(xué)與光譜分析;2010年03期
6 吳文瑾;;基于光譜曲線特性和波譜角分類的赤潮監(jiān)測(cè)方法[J];遙感信息;2009年04期
7 馬玲;崔德琪;王瑞;張倩倩;高巍;;成像光譜技術(shù)的研究與發(fā)展[J];光學(xué)技術(shù);2006年S1期
8 吳波,張良培,李平湘;非監(jiān)督正交子空間投影的高光譜混合像元自動(dòng)分解[J];中國(guó)圖象圖形學(xué)報(bào);2004年11期
9 張鈞萍,張曄,周廷顯;成像光譜技術(shù)超譜圖像分類研究現(xiàn)狀與分析[J];中國(guó)空間科學(xué)技術(shù);2001年01期
10 童慶禧,鄭蘭芬,王晉年,王向軍,董衛(wèi)東,胡遠(yuǎn)滿,黨順行;濕地植被成象光譜遙感研究[J];遙感學(xué)報(bào);1997年01期
相關(guān)博士學(xué)位論文 前7條
1 路錦正;基于稀疏表示的圖像超分辨率重構(gòu)技術(shù)研究[D];電子科技大學(xué);2013年
2 齊濱;高光譜圖像分類及端元提取方法研究[D];哈爾濱工程大學(xué);2012年
3 李二森;高光譜遙感圖像混合像元分解的理論與算法研究[D];解放軍信息工程大學(xué);2011年
4 黃遠(yuǎn)程;高光譜影像混合像元分解的若干關(guān)鍵技術(shù)研究[D];武漢大學(xué);2010年
5 崔燕;光譜成像儀定標(biāo)技術(shù)研究[D];中國(guó)科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2009年
6 賈森;非監(jiān)督的高光譜圖像解混技術(shù)研究[D];浙江大學(xué);2007年
7 張兵;時(shí)空信息輔助下的高光譜數(shù)據(jù)挖掘[D];中國(guó)科學(xué)院研究生院(遙感應(yīng)用研究所);2002年
相關(guān)碩士學(xué)位論文 前8條
1 肖倩;結(jié)合空間信息與光譜信息的高光譜圖像分類研究[D];哈爾濱工程大學(xué);2013年
2 魏芳潔;高光譜圖像波段選擇方法的研究[D];哈爾濱工程大學(xué);2013年
3 鐘曉姣;高光譜數(shù)據(jù)混合像元分解與光譜匹配驗(yàn)證算法[D];南京理工大學(xué);2013年
4 吳國(guó)峰;基于分組Fisher判別的高光譜圖像解混技術(shù)[D];哈爾濱工程大學(xué);2012年
5 劉雪松;基于非負(fù)矩陣分解的高光譜遙感圖像混合像元分解研究[D];復(fù)旦大學(xué);2011年
6 金晶;多/高光譜遙感圖像光譜分解研究與應(yīng)用[D];復(fù)旦大學(xué);2010年
7 鄧祿群;高光譜圖像類別信息相關(guān)技術(shù)研究[D];哈爾濱工程大學(xué);2010年
8 于淼;基于計(jì)算機(jī)視覺的公路障礙識(shí)別系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];沈陽(yáng)工業(yè)大學(xué);2005年
,本文編號(hào):2373551
本文鏈接:http://www.lk138.cn/guanlilunwen/gongchengguanli/2373551.html