中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁(yè) > 管理論文 > 工程管理論文 >

基于免疫遺傳算法的模糊柔性作業(yè)車(chē)間調(diào)度問(wèn)題研究

發(fā)布時(shí)間:2018-08-06 15:10
【摘要】:車(chē)間調(diào)度涉及企業(yè)的生產(chǎn)計(jì)劃、采購(gòu)、倉(cāng)庫(kù)、銷(xiāo)售等運(yùn)作管理,作為生產(chǎn)系統(tǒng)的核心,車(chē)間調(diào)度方案的優(yōu)化可以提高生產(chǎn)效益和設(shè)備利用率。由于產(chǎn)品趨于個(gè)性化,工藝路線(xiàn)更加多樣化,迫切需要企業(yè)能夠快速有效地實(shí)現(xiàn)小批量的定制化生產(chǎn),提高生產(chǎn)系統(tǒng)的柔性已成為企業(yè)提升競(jìng)爭(zhēng)力的主要手段之一。車(chē)間調(diào)度問(wèn)題的研究大多是將各種參數(shù)假定為某個(gè)具體數(shù)值,此類(lèi)確定性調(diào)度模型不能很好地反映實(shí)際生產(chǎn)情況。本文研究的模糊柔性調(diào)度能夠更加準(zhǔn)確地描述生產(chǎn)中的加工時(shí)間、交貨期等在一定范圍內(nèi)不能精確描述的數(shù)值,有助于調(diào)度模型的完善。單獨(dú)研究模糊和柔性的車(chē)間調(diào)度的成果已有很多,同時(shí)考慮兩種特性將使問(wèn)題變得復(fù)雜得多。而問(wèn)題隨著規(guī)模變大和約束增多會(huì)變得更加復(fù)雜,數(shù)學(xué)規(guī)劃、規(guī)則啟發(fā)式等方法受到限制,利用智能算法之間的混合有助于調(diào)度問(wèn)題的解決,其中遺傳算法由于操作簡(jiǎn)單,具有魯棒性、兼容性好等優(yōu)點(diǎn),經(jīng)常被用來(lái)和其他算法結(jié)合,本文采用的算法就是在免疫算法和遺傳算法結(jié)合的基礎(chǔ)上加以改進(jìn)。本文針對(duì)考慮模糊加工時(shí)間和模糊交貨期的柔性作業(yè)車(chē)間調(diào)度問(wèn)題,使用加權(quán)目標(biāo)值的方法構(gòu)建了多目標(biāo)模糊柔性作業(yè)車(chē)間調(diào)度模型,給出了改進(jìn)的免疫遺傳算法的設(shè)計(jì)流程。算法中染色體采用玄光男提出的實(shí)數(shù)串編碼,并采用濃度抑制的自適應(yīng)提取疫苗操作,提出了新型的采用模擬退火的疫苗接種操作,接種前先對(duì)疫苗片段上的等位基因運(yùn)用檢測(cè)策略進(jìn)行判斷,具體做法是對(duì)比新舊最優(yōu)個(gè)體的對(duì)應(yīng)基因位,若在記憶庫(kù)中出現(xiàn)概率較小則嚴(yán)格控制交換,判斷是否非法解后再?zèng)Q定選棄。若某基因位在連續(xù)幾代的接種中疫苗基因無(wú)變化,進(jìn)一步對(duì)比該基因位上出現(xiàn)過(guò)的其他數(shù)值所能構(gòu)成最優(yōu)個(gè)體,判斷是否最優(yōu)基因或者陷入局部最優(yōu)。通過(guò)模擬退火以概率進(jìn)行接種可有效地改善早熟收斂和局部搜索能力差的缺點(diǎn),并加入記憶庫(kù)彌補(bǔ)了固定的交叉變異的不靈活性。最后先通過(guò)參考文獻(xiàn)的仿真實(shí)例證實(shí)了算法的可行性和有效性,接著以加工時(shí)間和滿(mǎn)意度為指標(biāo)對(duì)常用作標(biāo)準(zhǔn)算例的Kacem模糊柔性作業(yè)車(chē)間調(diào)度進(jìn)行求解,和單目標(biāo)的遺傳算法的Pareto最優(yōu)解比較,結(jié)果表明了該算法顯著提高了全局搜索能力和收斂速度,再以加工時(shí)間和機(jī)器負(fù)荷為指標(biāo),用8?8和10?10實(shí)例進(jìn)行測(cè)試,該算法比文獻(xiàn)中的其他算法獲得更好或相當(dāng)?shù)腜areto解。最后用極具欺騙性的Rastrigin函數(shù)作為Benchmark進(jìn)行收斂性分析,與文獻(xiàn)中的其他算法對(duì)比,證明了本文改進(jìn)的免疫遺傳算法在求解易陷入局部最優(yōu)的問(wèn)題時(shí)優(yōu)于大部分算法,前期可快速地跳出局部收斂,并彌補(bǔ)了后期接近最優(yōu)解時(shí)出現(xiàn)波動(dòng)震蕩的缺陷。
[Abstract]:Shop scheduling involves the operation management of production planning, purchasing, warehouse, sales and so on. As the core of production system, the optimization of shop scheduling scheme can improve the efficiency of production and the utilization of equipment. Because the products tend to be individualized and the process routes are more diversified, it is urgent for enterprises to realize the customization of small batch production quickly and effectively, and to improve the flexibility of the production system has become one of the main means to enhance the competitiveness of enterprises. Most of the researches on job shop scheduling problem assume various parameters as some specific value, and this kind of deterministic scheduling model can not well reflect the actual production situation. The fuzzy flexible scheduling studied in this paper can more accurately describe the processing time and the due date of production, which can not be accurately described in a certain range, which is helpful to the improvement of the scheduling model. There have been a lot of achievements on fuzzy and flexible job shop scheduling alone, and it will be much more complicated to consider the two characteristics at the same time. The problem will become more complex with the increase of scale and constraints, and the methods of mathematical programming, rule heuristics and so on are restricted. The use of the mixture of intelligent algorithms is helpful to solve the scheduling problem, in which the genetic algorithm is easy to operate. Because of its good robustness and good compatibility, it is often used to combine with other algorithms. The algorithm used in this paper is improved on the basis of the combination of immune algorithm and genetic algorithm. Aiming at the flexible job shop scheduling problem with fuzzy processing time and fuzzy due date, the multi-objective fuzzy flexible job shop scheduling model is constructed by using weighted target value method, and the design flow of the improved immune genetic algorithm is given. In the algorithm, the chromosome is encoded by real number string proposed by Xuan Guang male, and the adaptive extraction vaccine operation of concentration suppression is used. A new vaccination operation using simulated annealing is proposed. Before inoculation, the alleles on the vaccine fragments were judged by using the detection strategy. The specific method was to compare the corresponding gene sites of the new and the old optimal individuals. If the probability of appearing in the memory bank was small, the exchange would be strictly controlled. Decide whether the solution is illegal before you decide to abandon it. If there is no change in the vaccine gene in successive generations of inoculation, further comparison of the other values on the gene site can constitute the optimal individual, determine whether the optimal gene or fall into the local optimal. Inoculation with probability by simulated annealing can effectively improve premature convergence and poor local search ability, and add memory bank to make up for the inflexibility of fixed cross mutation. Finally, the feasibility and effectiveness of the algorithm are verified by a simulation example in reference. Then, the Kacem fuzzy flexible job shop scheduling, which is often used as a standard example, is solved by taking the processing time and satisfaction degree as the index. Compared with the Pareto optimal solution of the single objective genetic algorithm, the results show that the algorithm improves the global search ability and convergence speed significantly, and then takes the processing time and machine load as the index, and tests with 8 / 8 and 10 / 10 examples. This algorithm obtains better or equivalent Pareto solutions than other algorithms in literature. Finally, the Rastrigin function is used as the Benchmark to analyze the convergence. Compared with other algorithms in the literature, the improved immune genetic algorithm is superior to most of the algorithms in solving the problem which is prone to fall into local optimum. The early stage can jump out of the local convergence quickly and make up for the defect of wave oscillation when the latter is near the optimal solution.
【學(xué)位授予單位】:重慶交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TB497;TP18

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 沈建濤;黃宗南;;基于雙疫苗免疫遺傳算法的混合Flow-shop問(wèn)題優(yōu)化[J];計(jì)量與測(cè)試技術(shù);2015年08期

2 孔德瑞;黃宗南;;基于關(guān)鍵路徑疫苗的免疫遺傳算法求解JSP問(wèn)題[J];工業(yè)控制計(jì)算機(jī);2015年06期

3 劉曉冰;焦璇;黃明;寧濤;;用混合量子算法求解模糊柔性作業(yè)車(chē)間調(diào)度問(wèn)題[J];工業(yè)工程與管理;2015年03期

4 馬佳;;關(guān)于車(chē)間調(diào)度優(yōu)化問(wèn)題的仿真與設(shè)計(jì)[J];計(jì)算機(jī)仿真;2015年04期

5 劉志;董明;李永林;;等待時(shí)間受限的并行批處理調(diào)度問(wèn)題研究[J];工業(yè)工程與管理;2014年06期

6 彭建剛;劉明周;張璽;張銘鑫;葛茂根;;工序加工時(shí)間不確定的柔性作業(yè)車(chē)間重調(diào)度算法[J];中國(guó)機(jī)械工程;2014年17期

7 劉樂(lè);周泓;;一種常見(jiàn)干擾條件下的開(kāi)放式車(chē)間重調(diào)度研究[J];管理科學(xué)學(xué)報(bào);2014年06期

8 湯洪濤;丁彬楚;李修琳;魯建廈;;基于改進(jìn)免疫遺傳算法的混合車(chē)間調(diào)度研究[J];中國(guó)機(jī)械工程;2014年09期

9 萬(wàn)建臣;靳宗信;;多峰值函數(shù)優(yōu)化問(wèn)題的免疫遺傳算法求解[J];電子科技大學(xué)學(xué)報(bào);2013年05期

10 楊建斌;孫樹(shù)棟;牛剛剛;王萌;;自適應(yīng)遺傳算法求解模糊作業(yè)車(chē)間調(diào)度問(wèn)題[J];機(jī)械科學(xué)與技術(shù);2013年01期

相關(guān)博士學(xué)位論文 前4條

1 鄭友蓮;面向模糊車(chē)間調(diào)度問(wèn)題的智能算法研究[D];武漢大學(xué);2011年

2 王曉娟;多目標(biāo)柔性作業(yè)車(chē)間調(diào)度方法研究[D];華中科技大學(xué);2011年

3 左燕;大規(guī)模復(fù)雜生產(chǎn)調(diào)度問(wèn)題瓶頸分解方法研究[D];上海交通大學(xué);2007年

4 盧冰原;模糊環(huán)境下的Flexible Job-shop調(diào)度問(wèn)題的研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2006年

相關(guān)碩士學(xué)位論文 前4條

1 何向婷;基于免疫遺傳算法的多目標(biāo)優(yōu)化研究[D];西安科技大學(xué);2013年

2 崔紅建;改進(jìn)免疫遺傳算法在組合優(yōu)化問(wèn)題中的應(yīng)用研究[D];大連海事大學(xué);2012年

3 許秀梅;基于退火免疫遺傳算法的測(cè)試數(shù)據(jù)生成方法研究[D];北京交通大學(xué);2008年

4 朱俊;不確定信息條件下柔性作業(yè)車(chē)間調(diào)度問(wèn)題研究[D];華中科技大學(xué);2007年



本文編號(hào):2168114

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/guanlilunwen/gongchengguanli/2168114.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)9ee5a***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com