中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁(yè) > 管理論文 > 工程管理論文 >

基于流機(jī)電多物理場(chǎng)耦合下渦激振動(dòng)能量收集模型及特性

發(fā)布時(shí)間:2018-01-23 09:50

  本文關(guān)鍵詞: 渦激振動(dòng) 流機(jī)電耦合 能量收集模型 計(jì)算方法 能量收集特性 出處:《重慶大學(xué)》2014年博士論文 論文類型:學(xué)位論文


【摘要】:隨著微能源、MEMS、無(wú)線傳感器網(wǎng)絡(luò)等技術(shù)的飛速發(fā)展,使用壓電轉(zhuǎn)換振動(dòng)能量收集原理(PEH)收集流體機(jī)械能成為近年的研究熱點(diǎn)。壓電振動(dòng)能量收集作為一種有效的環(huán)境能源收集技術(shù),受到了國(guó)內(nèi)外廣泛關(guān)注,主要應(yīng)用于健康監(jiān)控、無(wú)線傳感器系統(tǒng)、微小型電機(jī)耦合器件等領(lǐng)域。因此,研究壓電振動(dòng)能量收集技術(shù)具有廣闊的應(yīng)用前景和實(shí)用價(jià)值。渦激振動(dòng)(VIV)現(xiàn)象可將流動(dòng)能轉(zhuǎn)化為振動(dòng)能。渦激振動(dòng)中的鎖定效應(yīng)可有效增加振動(dòng)強(qiáng)度,從而提高能量收集的效率,具有重要研究?jī)r(jià)值。然而目前針對(duì)渦激振動(dòng)能量收集技術(shù)(VIVPEH)的研究極少,特別是針對(duì)流場(chǎng)流動(dòng)-機(jī)械振動(dòng)-帶電回路(流機(jī)電)多物理場(chǎng)耦合模型建立和求解方法的研究鮮有報(bào)道。因此,本文針對(duì)流機(jī)電多物理場(chǎng)耦合渦激振動(dòng)能量模型及特性的研究具有非常重要的學(xué)術(shù)意義和價(jià)值。 本文首先針對(duì)渦激振動(dòng)中存在的流固耦合問(wèn)題,進(jìn)行了流固耦合渦激振動(dòng)的數(shù)學(xué)模型建立和求解方法的研究。其次,進(jìn)行了如何將渦激振動(dòng)現(xiàn)象與壓電能量收集系統(tǒng)進(jìn)行流機(jī)電多物理場(chǎng)耦合的研究,重點(diǎn)進(jìn)行了如何建立流機(jī)電多物理場(chǎng)耦合數(shù)學(xué)模型以及如何對(duì)該模型進(jìn)行求解的研究。然后,本文基于以上流機(jī)電多物理場(chǎng)耦合模型與方法,對(duì)光滑圓柱、PTC圓柱、帶攻角方柱、不同頂角三角柱等幾種不同形狀柱體VIVPEH在不同外接負(fù)載條下,不同來(lái)流速度時(shí)的振動(dòng)響應(yīng)、流場(chǎng)特性和能量收集特性進(jìn)行了深入研究。得出了以下主要成果: ①首次建立了一種計(jì)算流固耦合VIV動(dòng)態(tài)響應(yīng)的數(shù)值計(jì)算方法,該方法可以將流體連續(xù)性方程和N-S方程與柱體振動(dòng)方程同時(shí)求解,,并且可以克服傳統(tǒng)動(dòng)網(wǎng)格技術(shù)的畸變和扭曲等問(wèn)題。為驗(yàn)證流固耦合渦激振動(dòng)求解方法,首先使用靜態(tài)柱體繞流的方法,驗(yàn)證了本文外流場(chǎng)求解數(shù)值方法在求解大范圍雷諾數(shù)時(shí)的準(zhǔn)確性。然后,在風(fēng)洞實(shí)驗(yàn)中,通過(guò)測(cè)試不同來(lái)流速度下的光滑圓柱VIV振幅,與利用本文數(shù)值求解方法所得結(jié)果進(jìn)行對(duì)比,驗(yàn)證了本文VIV流固耦合數(shù)值求解方法的準(zhǔn)確性。 ②基于壓電懸臂梁能量收集的集總參數(shù)模型,同時(shí)考慮鈍體的振動(dòng)、外部流場(chǎng)的流動(dòng)和壓電回路三者的相互作用,首次建立了將鈍體繞流渦激振動(dòng)作為動(dòng)態(tài)載荷,帶動(dòng)壓電懸臂裝置進(jìn)行振動(dòng)并且收集渦激振動(dòng)能量的數(shù)學(xué)模型,并提出了該模型的數(shù)值求解方法。首先,使用系數(shù)矩陣法,求解由機(jī)電耦合鈍體振動(dòng)方程的線性形式和高斯定律組成的方程組,求得了外接負(fù)載對(duì)鈍體振動(dòng)系統(tǒng)的負(fù)反饋?zhàn)饔茫瑥亩苏駝?dòng)方程中的電壓項(xiàng),使得振動(dòng)方程降維,從而可以使用本文的流固耦合VIV數(shù)值計(jì)算方法中進(jìn)行求解,并得出振動(dòng)響應(yīng)和流場(chǎng)特性;然后使用基于正弦波的準(zhǔn)穩(wěn)態(tài)理論,求解高斯定律,得到能量收集電壓和功率輸出的一般形式。最后,將振動(dòng)振幅的計(jì)算結(jié)果代入電壓輸出和功率輸出的表達(dá)式中,即可獲得流機(jī)電多物理場(chǎng)耦合的渦激振動(dòng)能量收集特性。 ③基于流機(jī)電多物理場(chǎng)耦合渦激振動(dòng)能量收集數(shù)學(xué)模型和求解方法,首次獲得了流機(jī)電多物理場(chǎng)耦合下,光滑圓柱、PTC圓柱VIVPEH在不同外接電阻對(duì)振動(dòng)系統(tǒng)的負(fù)反饋下的渦激振動(dòng)響應(yīng)及能量收集特性。機(jī)電耦合阻尼會(huì)隨電阻增大而先增大后減小,而機(jī)電耦合頻率在經(jīng)歷一個(gè)階躍性上升后重新達(dá)到平穩(wěn)。振幅曲線中觀察到了振幅曲線中的三個(gè)分支,光滑圓柱與PTC圓柱的振幅最大值較為接近,且PTC圓柱的鎖振區(qū)域得到了延后。光滑圓柱與PTC圓柱VIVPEH的輸出電壓和功率最大值較為接近。 ④獲得了不同攻角方柱和不同頂角三角柱VIVPEH的能量收集特性,結(jié)果表明方柱VIVPEH能量收集特性要優(yōu)于圓柱,而三角柱VIVPEH要優(yōu)于方柱。攻角對(duì)方柱振動(dòng)振幅最大值和鎖振區(qū)域有著較大影響,最大振幅、電壓、功率輸出出現(xiàn)在攻角為45°時(shí)。三角柱VIVPEH的能量收集能力要明顯強(qiáng)于圓柱和方柱,鎖振區(qū)域和電壓、功率輸出最大值均得到了提高。 ⑤在對(duì)比多種柱體VIVPEH的能量收集特性的基礎(chǔ)上,發(fā)現(xiàn)60°頂角三角柱VIVPEH的能量收集能力最強(qiáng),最有利于渦激振動(dòng)能量收集。60°頂角三角柱較之PTC圓柱的最大電壓提升了176.23%,最大功率提升了661.8%。
[Abstract]:With the rapid development of micro energy, MEMS, wireless sensor network technology, using the piezoelectric conversion principle of vibration energy collection (PEH) collection of fluid machinery can become a research hotspot in recent years. The piezoelectric vibration energy harvesting as an effective environmental energy harvesting technology, has attracted wide attention at home and abroad, mainly used in health monitoring. Wireless sensor system, the field of micro motor coupler. Therefore, the research of piezoelectric vibration energy harvesting technology has a wide application prospect and practical value. The vortex induced vibration (VIV) phenomenon can be transformed into vibrational energy flow. The locking effect of vortex induced vibration in vibration can effectively increase the strength, so as to improve the efficiency of energy collection and it has important research value. However, the vortex induced vibration energy harvesting technologies (VIVPEH) few studies, especially for electric circuit with flow - mechanical vibration (electromechanical flow) There are few reports on the establishment and solution methods of multi physical field coupling models. Therefore, it is of great academic significance and value to study the energy model and characteristics of multi physics field coupled vortex induced vibration.
Aiming at the existence of vortex induced vibration of the fluid solid coupling problem, studied the mathematical model of fluid solid coupling of vortex induced vibration is established and the solving method. Secondly, for how the vortex induced vibration phenomenon and the piezoelectric energy harvesting system flow research of electromechanical coupled multi physics field, focusing on how to establish flow and multi field coupling mathematical model and study how to solve the model. Then, the above flow of electromechanical coupled multi physics model and method based on smooth cylindrical, PTC cylindrical, square columns with angle of attack, different angle three prism shapes column VIVPEH in different load. The vibration response of the different flow speed, flow characteristics and energy collection characteristics were studied. The following main results:
For the first time established a calculation method for the calculation of fluid solid coupling dynamic response of VIV value, the method can make the fluid continuity equation and N-S equation and the cylinder vibration equations are solved simultaneously, and it can overcome the traditional technique of dynamic mesh distortion and distortion problems. The fluid solid coupling method for vortex induced vibration test method the first use of static column flow, verify the accuracy of the flow field numerical method in solving a wide range of Reynolds numbers. Then, during the wind tunnel experiments, through the test of different flow velocity under the smooth cylindrical VIV amplitude, the results were compared with the use of numerical methods in this paper, to verify the accuracy of the VIV a numerical method for solving the flow solid coupling.
The lumped parameter model of piezoelectric cantilever beam energy collection based on considering the vibration blunt body, interaction between external flow field and piezoelectric loop three, first established the vortex induced vibration action as dynamic load, driven by the mathematical model of piezoelectric cantilever device for vibration and vortex collection the vibration energy, and puts forward the numerical solution of the model. First, using the coefficient matrix method, equations composed of electromechanical coupling vibration equation of the linear form of the bluff body and Gauss's law, the external load feedback effect of vibration system of the bluff body is obtained, which eliminates the voltage vibration equation. So, the vibration equation of dimensionality reduction, which can be used in the numerical calculation method of fluid solid coupling in VIV is solved, and the response and flow characteristics of vibration; and then use the quasi steady state theory based on sine wave, the solution of Gauss The general form of energy collection voltage and power output is obtained. Finally, the calculation results of vibration amplitudes are substituted into the expressions of voltage output and power output, and the energy harvesting characteristics of vortex induced vibration of multi electromechanical coupling of flow and electromechanical can be obtained.
The multi field coupling vortex vibration energy collection mathematical model and solving method of electromechanical flow based on the obtained flow electrical multi physics coupling, cylindrical, cylindrical PTC VIVPEH resistor under different external vibration system of the negative feedback of the vortex induced vibration and energy harvesting characteristics of electromechanical coupling damping will begin. Increases and then decreases with the increase of resistance, and the electromechanical coupling frequency after a step up again after reaching steady. The amplitude curves were observed in the three branches of the amplitude curves, maximum amplitude and smooth cylindrical PTC cylinder is closer, and the vibration of PTC cylindrical lock region has been delayed. The output voltage and the maximum power of PTC and VIVPEH of the cylindrical cylinder is close to.
The obtained energy collection characteristics at different angles of square column and different angle triangular VIVPEH, results show that VIVPEH is superior to the characteristics of energy collection column column, and the triangular column of VIVPEH is better than that of the square column. Had a great influence on other column vibration amplitude maximum angle of attack and lock vibration area, the large amplitude, voltage, power output the attack angle is 45 degree. The energy harvesting capability of triangular VIVPEH is better than the circular and square column, lock vibration region and voltage, the maximum power output are improved.
Based on the characteristics of energy collection and comparison of a variety of column VIVPEH, found that 60 degree angle triangular VIVPEH energy harvesting ability is the strongest, most conducive to the vortex induced vibration energy collection maximum voltage.60 DEG angle triangular column than PTC columns increased by 176.23%, the maximum power increased by 661.8%.

【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TB535

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉祥建;陳仁文;;壓電振動(dòng)能量收集裝置研究現(xiàn)狀及發(fā)展趨勢(shì)[J];振動(dòng)與沖擊;2012年16期

2 陳定方;孫科;李立杰;楊艷芳;梅杰;;微型壓電能量收集器的研究現(xiàn)狀和發(fā)展趨勢(shì)[J];湖北工業(yè)大學(xué)學(xué)報(bào);2012年04期

3 羅承先;;世界風(fēng)力發(fā)電現(xiàn)狀與前景預(yù)測(cè)[J];中外能源;2012年03期

4 李軍軍;吳政球;譚勛瓊;陳波;;風(fēng)力發(fā)電及其技術(shù)發(fā)展綜述[J];電力建設(shè);2011年08期

5 李泓澤;郭森;王寶;;我國(guó)風(fēng)力發(fā)電的環(huán)境價(jià)值分析[J];能源技術(shù)經(jīng)濟(jì);2011年07期

6 鮮榮;廖海黎;李明水;;大比例主梁節(jié)段模型渦激振動(dòng)風(fēng)洞試驗(yàn)分析[J];實(shí)驗(yàn)流體力學(xué);2009年04期

7 詹昊;方秦漢;李萬(wàn)平;;鋼桁拱橋吊桿渦激振動(dòng)仿真分析[J];中國(guó)鐵道科學(xué);2009年02期

8 徐楓;歐進(jìn)萍;肖儀清;;方柱流致橫向振動(dòng)的CFD數(shù)值模擬[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2008年12期

9 李寧;程禮;;壓電分流阻尼的虛擬實(shí)現(xiàn)[J];空軍工程大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年04期

10 賀學(xué)鋒;溫志渝;溫中泉;尚正國(guó);劉海濤;廖海洋;;振動(dòng)式壓電發(fā)電機(jī)的理論模型與實(shí)驗(yàn)[J];納米技術(shù)與精密工程;2007年04期

相關(guān)博士學(xué)位論文 前2條

1 丁林;被動(dòng)湍流控制下多柱體流致振動(dòng)研究[D];重慶大學(xué);2013年

2 徐楓;結(jié)構(gòu)流固耦合振動(dòng)與流動(dòng)控制的數(shù)值模擬[D];哈爾濱工業(yè)大學(xué);2009年



本文編號(hào):1457270

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/guanlilunwen/gongchengguanli/1457270.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b3eaa***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com