中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

數(shù)字閃爍探測(cè)器

發(fā)布時(shí)間:2018-07-20 08:55
【摘要】:PET通過(guò)檢測(cè)攝入活體內(nèi)放射性示蹤劑的分布狀態(tài)對(duì)機(jī)體內(nèi)各器官的代謝水平、生化反應(yīng)、功能活動(dòng)和灌注進(jìn)行定量、動(dòng)態(tài)地評(píng)估。按信號(hào)流順序,PET被分為探測(cè)器系統(tǒng)、數(shù)據(jù)獲得系統(tǒng)、圖像重建系統(tǒng)以及圖像顯示與分析系統(tǒng)。探測(cè)器系統(tǒng)通常由多個(gè)閃爍探測(cè)器排布為環(huán)形結(jié)構(gòu)的方式構(gòu)成,用于捕獲放射性示蹤劑衰變后產(chǎn)生的Gamma粒子并形成相應(yīng)的閃爍脈沖。數(shù)據(jù)獲得系統(tǒng)通過(guò)對(duì)閃爍脈沖的分析、處理獲取粒子的能量沉積信息并形成符合數(shù)據(jù)。圖像重建系統(tǒng)則利用符合數(shù)據(jù)反演出放射性示蹤劑在機(jī)體內(nèi)的分布狀態(tài)并通過(guò)后續(xù)的圖像顯示與分析系統(tǒng)展現(xiàn)出來(lái),F(xiàn)代PET系統(tǒng)中,數(shù)據(jù)獲得系統(tǒng)通常采用模數(shù)混合的架構(gòu)。模擬電路被用來(lái)對(duì)閃爍脈沖進(jìn)行處理,粒子的能量沉積大小、時(shí)間以及位置等信息轉(zhuǎn)化為相應(yīng)的模擬電壓量或觸發(fā)信號(hào)量后再由后續(xù)的電路進(jìn)行數(shù)字化獲取以及符合甄別。眾所周知,模擬電路對(duì)閃爍脈沖的幅值大小、脈沖持續(xù)時(shí)間、頻率范圍等特性較為敏感,數(shù)據(jù)獲得系統(tǒng)需要依據(jù)閃爍探測(cè)器的特性進(jìn)行針對(duì)性設(shè)計(jì);模擬電路難以實(shí)現(xiàn)復(fù)雜的脈沖分析、處理方法,粒子能量信息多由一些簡(jiǎn)單的線性方法及電路提取,性能優(yōu)異但算法復(fù)雜的脈沖處理方法無(wú)法應(yīng)用;模擬電路系統(tǒng)難以應(yīng)對(duì)閃爍探測(cè)器輸出脈沖的基線漂移、事件堆疊等情況,限制了系統(tǒng)的穩(wěn)定性和性能的進(jìn)一步提升。近年來(lái),隨著數(shù)字信號(hào)處理技術(shù)和方法的發(fā)展,將閃爍脈沖直接數(shù)字化,利用軟件算法替代傳統(tǒng)模擬電路提取粒子能量沉積信息的方式極具吸引力。數(shù)字化后的閃爍脈沖在傳輸、處理等過(guò)程中不再因模擬電路的信號(hào)帶寬、噪聲干擾等因素影響信號(hào)質(zhì)量、惡化粒子能量沉積信息提取精度,這有利于大型、復(fù)雜系統(tǒng)的設(shè)計(jì)和開發(fā):粒子能量沉積信息提取的準(zhǔn)確性也將因高性能的數(shù)字信號(hào)處理技術(shù)和方法的應(yīng)用得以提高:此外,數(shù)字閃爍脈沖下基線漂移和事件堆疊等情況可在信號(hào)處理和分析的過(guò)程中得到補(bǔ)償和校正,系統(tǒng)的性能和穩(wěn)定性將因此而進(jìn)一步提高。 將數(shù)字化電路與閃爍探測(cè)器相結(jié)合,直接輸出數(shù)字閃爍脈沖的數(shù)字閃爍探測(cè)器極具發(fā)展前景。數(shù)字閃爍探測(cè)器的實(shí)現(xiàn)將簡(jiǎn)化PET系統(tǒng)的結(jié)構(gòu),降低系統(tǒng)的工程開發(fā)難度;快速發(fā)展的數(shù)字信號(hào)處理技術(shù)與方法也將得以應(yīng)用于閃爍脈沖的分析與處理,加速PET系統(tǒng)的發(fā)展。閃爍脈沖的準(zhǔn)確數(shù)字化是數(shù)字閃爍探測(cè)器實(shí)現(xiàn)的關(guān)鍵。受采樣率和功耗的限制,一直以來(lái)利用ADC直接獲取數(shù)字閃爍脈沖的方式存在工程實(shí)現(xiàn)困難、硬件成本昂貴、數(shù)字脈沖欠采樣等諸多問(wèn)題。在對(duì)粒子能量沉積時(shí)間信息提取精度有較高要求的TOF PET等系統(tǒng)中,ADC難以直接應(yīng)用。由我課題組提出的多閾值電壓采樣(Multi-Voltage Threshold,以下簡(jiǎn)稱MVT)方法則通過(guò)對(duì)閃爍脈沖過(guò)閾值電壓的時(shí)間點(diǎn)進(jìn)行采樣的方式完成閃爍脈沖的數(shù)字化。相應(yīng)的采樣電路僅需少量比較器和時(shí)間數(shù)字轉(zhuǎn)換器便可實(shí)現(xiàn),具有工程開發(fā)難度小、硬件成本低等特點(diǎn)。在此背景下,本文以MVT方法為基礎(chǔ)圍繞數(shù)字閃爍探測(cè)器的關(guān)鍵技術(shù)、系統(tǒng)架構(gòu)以及應(yīng)用展開研究工作。 首先,通過(guò)研究指出閃爍脈沖下降沿中不可避免的噪聲影響現(xiàn)有MVT采樣方法獲取的數(shù)字閃爍脈沖精度和后續(xù)的粒子能量沉積大小信息的提取精度。這一噪聲雖然可以通過(guò)低通濾波器濾除,但粒子能量沉積時(shí)間信息的提取精度卻因此而惡化。針對(duì)這一問(wèn)題,論文提出了精確MVT采樣方法并與現(xiàn)有MVT采樣方法下得到的數(shù)字閃爍脈沖提取的粒子能量沉積精度進(jìn)行了對(duì)比研究。精確MVT采樣方法實(shí)現(xiàn)了噪聲干擾下數(shù)字閃爍脈沖的精確數(shù)字化,在不惡化粒子能量沉積時(shí)間信息提取精度的前提下有效提高了能量沉積大信息的提取精度。對(duì)應(yīng)的能量分辨率由原先的16.9%@511keV優(yōu)化到13.0%@511keV。 其次,設(shè)計(jì)并實(shí)現(xiàn)了精確MVT采樣電路。解決了傳統(tǒng)TDC因死時(shí)間而無(wú)法應(yīng)用于精確MVT采樣電路的問(wèn)題。提出了采用LVDS接受器實(shí)現(xiàn)閾值比較器的方法,不僅提高了MVT采樣電路的集成度、降低了系統(tǒng)功耗,還提高了脈沖過(guò)閾值電壓的時(shí)間信息獲取精度。提出了精確MVT采樣電路校正方法,解決了MVT采樣電路中不同通道間的閾值電壓和時(shí)間響應(yīng)不一致帶來(lái)的數(shù)字化精度下降的問(wèn)題。將實(shí)現(xiàn)的精確MVT采樣電路應(yīng)用于一對(duì)LYSO/SiPM探測(cè)器輸出脈沖的數(shù)字化,最終獲得了13.9%@511keV的能量分辨率和438ps的時(shí)間分辨率。 再次,提出了數(shù)字閃爍探測(cè)器架構(gòu),按信號(hào)流的順序劃分為探測(cè)器單元、數(shù)字化單元以及接口單元。數(shù)字閃爍脈沖通過(guò)接口單元傳輸出來(lái),粒子能量沉積信息則由后續(xù)數(shù)字脈沖分析、處理平臺(tái)通過(guò)分析數(shù)字閃爍脈沖的方式提取。利用該架構(gòu)下的數(shù)字閃爍探測(cè)器進(jìn)行PET等系統(tǒng)的開發(fā),僅需在計(jì)算機(jī)等系統(tǒng)實(shí)現(xiàn)的數(shù)字脈沖分析、處理平臺(tái)中開發(fā)相應(yīng)的算法和程序即可完成。數(shù)字閃爍探測(cè)器的實(shí)現(xiàn),降低了PET等系統(tǒng)的開發(fā)難度。論文以該架構(gòu)和精確MVT采樣電路為基礎(chǔ)完成了數(shù)字閃爍探測(cè)器的實(shí)現(xiàn),時(shí)間分辨率為525ps、能量分辨率為15.1%@511keV。 最后,提出了數(shù)字PET系統(tǒng)架構(gòu),該架構(gòu)下的數(shù)字PET成像系統(tǒng)具有系統(tǒng)架構(gòu)簡(jiǎn)潔,工程實(shí)現(xiàn)簡(jiǎn)單,系統(tǒng)成像性能優(yōu)異等特點(diǎn)。為針對(duì)應(yīng)用,適應(yīng)性的構(gòu)建PET成像系統(tǒng)提供了技術(shù)基礎(chǔ)。采用該系統(tǒng)架構(gòu)和數(shù)字閃爍探測(cè)器,本文針對(duì)具體應(yīng)用需求完成了三種具有不同成像視野的數(shù)字PET系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)。對(duì)其中針對(duì)臨床腦部成像的PET系統(tǒng)進(jìn)行了初步的性能評(píng)估和假體成像。該系統(tǒng)的空間分辨率為2.5mmm,時(shí)間、能量分辨率分別為543ps和16.3%@511keV。與單個(gè)數(shù)字PET探測(cè)器的性能相比,系統(tǒng)性能未發(fā)生顯著惡化。這一些結(jié)果初步揭示了數(shù)字PET探測(cè)器及數(shù)字化架構(gòu)下PET成像系統(tǒng)的優(yōu)勢(shì)。
[Abstract]:PET quantified the metabolic levels, biochemical reactions, functional activities and perfusion of various organs in the body by detecting the distribution of radioactive tracers in the living body. According to the sequence of signal flow, PET was divided into detector system, data acquisition system, image reconstruction system and image display and analysis system. It is often made up of multiple scintillation detectors as a ring structure. It is used to capture Gamma particles produced by radioactive tracer decay and form corresponding scintillation pulses. The data acquisition system can obtain the energy deposition information of the particles by analysis of the scintillation pulse and form the consistent data. The distribution of radioactive tracers in the body is shown by the data. In the modern PET system, the data acquisition system usually uses a modular mixed structure. Analog circuits are used to process scintillation pulses, the size, time and position of the particle size, time and position. It is well known that the analog circuit is more sensitive to the magnitude of the scintillation pulse, the duration of the pulse, the frequency range and so on. The data acquisition system needs to be designed according to the characteristics of the scintillation detector. It is difficult to realize complex pulse analysis, processing method, the processing method, the particle energy information is extracted by some simple linear methods and circuits. The performance is excellent, but the algorithm complex pulse processing method can not be applied. The analog circuit system is difficult to cope with the base line drift of the output pulse of the scintillation detector, the event stacking and so on, which limits the system. In recent years, with the development of digital signal processing technology and methods, it is very attractive to digitize scintillation pulses directly and use software algorithms instead of traditional analog circuits to extract particle energy deposition information. The digital scintillation pulse is no longer due to analog electricity in the process of transmission and processing. The signal bandwidth, noise interference and other factors affect the quality of the signal and deteriorate the precision of particle energy deposition information extraction. This is beneficial to the design and development of large and complex systems. The accuracy of particle energy deposition information extraction will also be improved by the application of high performance digital signal processing and square methods: in addition, digital scintillation pulses will be improved. The conditions of lower baseline drift and event stacking can be compensated and corrected in the process of signal processing and analysis, and the performance and stability of the system will be further improved.
Digital scintillation detectors, which combine digital circuits with scintillation detectors, are very promising for digital scintillation detectors with direct output of digital scintillation pulses. The realization of digital scintillation detectors will simplify the structure of the PET system and reduce the difficulty of the development of the system. The rapid development of digital signal processing techniques and methods will also be applied to the scintillation pulse. Analysis and processing to accelerate the development of the PET system. The key to the realization of the digital scintillation detector is the accurate digitization of the scintillation pulse. Under the restriction of the sampling rate and the power consumption, there are many problems such as the difficulty of engineering realization, the expensive hardware cost, the undersampling of the digital pulse and so on. In the case of the particle energy, the method of obtaining the digital scintillation pulse by the sampling rate and the power consumption is limited. In the system of TOF PET, such as high precision of extracting time information, ADC is difficult to apply directly. The method of multi threshold voltage sampling (Multi-Voltage Threshold, hereinafter referred to as hereinafter referred to as MVT) proposed by our group is to digitize the scintillation pulse by sampling the time point of the threshold voltage of the scintillation pulse. The sampling circuit only needs a small amount of comparator and time digital converter. It has the characteristics of little difficulty in engineering development and low cost of hardware. Under this background, this paper is based on the key technology, system architecture and application of digital scintillation detector based on MVT method.
First, the precision of the digital scintillation pulse obtained by the existing MVT sampling method and the extraction precision of the subsequent particle energy deposition information obtained by the unavoidable noise in the falling edge of the scintillation pulse are studied. Although the noise can be filtered through a low pass filter, the extraction precision of the particle energy deposition time information is therefore the result of this. In order to solve this problem, an accurate MVT sampling method is proposed and compared with the particle energy deposition precision obtained from the digital scintillation pulse obtained under the existing MVT sampling method. The precise MVT sampling method realizes the exact digital character of the digital scintillation pulse under the noise interference, and does not deteriorate the energy deposition time letter of the particle. Under the premise of accuracy of extraction, the extraction accuracy of large energy information is effectively improved. The corresponding energy resolution is optimized from original 16.9%@511keV to 13.0%@511keV..
Secondly, an accurate MVT sampling circuit is designed and implemented. The problem that the traditional TDC can not be applied to the precise MVT sampling circuit because of the dead time is solved. A method of using the LVDS receiver to realize the threshold comparator is proposed, which not only improves the integration degree of the MVT sampling circuit, reduces the power consumption of the system, but also improves the time information of the pulse over threshold voltage. The accurate MVT sampling circuit correction method is proposed to solve the problem of the digital precision decline caused by different threshold voltage and time response between different channels in the MVT sampling circuit. The accurate MVT sampling circuit is applied to the digitization of the output pulse of a pair of LYSO/SiPM detectors, and the 13.9%@511keV is finally obtained. The resolution of energy and the time resolution of 438ps.
Thirdly, the architecture of digital scintillation detector is proposed, which is divided into detector unit, digital unit and interface unit according to the sequence of signal flow. The digital scintillation pulse is transmitted through the interface unit. The particle energy deposition information is analyzed by the subsequent digital pulse, and the processing platform is extracted through the analysis of the digital scintillation pulse. The development of the digital scintillation detector for PET, such as the digital pulse analysis and the development of the corresponding algorithms and programs in the processing platform. The realization of the digital scintillation detector reduces the difficulty of the development of PET and other systems. This paper is based on the architecture and the accurate MVT sampling circuit. The implementation of digital scintillation detector has a time resolution of 525ps and an energy resolution of 15.1%@511keV..
Finally, the architecture of digital PET system is proposed. The digital PET imaging system under this architecture has the characteristics of simple system architecture, simple engineering implementation and excellent imaging performance. It provides a technical basis for the application of the adaptive construction of PET imaging system. The system architecture and digital scintillation detectors are adopted. This paper is aimed at the specific application requirements. The design and implementation of three digital PET systems with different imaging fields are completed. A preliminary performance evaluation and prosthesis imaging of the PET system for clinical brain imaging are performed. The spatial resolution of the system is 2.5mmm, time, and energy resolution is compared to the performance of 543ps and 16.3%@ 511keV., respectively, with a single digital PET detector. The performance of the system has not significantly deteriorated. These results preliminarily reveal the advantages of the digital PET detector and the PET imaging system under the digital architecture.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:R817

【相似文獻(xiàn)】

相關(guān)期刊論文 前1條

1 王震濤;張建國(guó);楊翊方;王海軍;;無(wú)機(jī)閃爍探測(cè)器的發(fā)展和應(yīng)用[J];中國(guó)輻射衛(wèi)生;2008年04期

相關(guān)會(huì)議論文 前10條

1 范銳鋒;馬景芳;艾杰;戴紅躍;;雙通道閃爍探測(cè)器探測(cè)脈沖中子技術(shù)[A];中國(guó)工程物理研究院科技年報(bào)(2008年版)[C];2009年

2 陳家斌;唐道源;丁永坤;王紅斌;馮杰;騰浩;張海鷹;;超快猝滅塑料閃爍探測(cè)器性能標(biāo)定[A];中國(guó)工程物理研究院科技年報(bào)(1998)[C];1998年

3 何景棠;陳端保;朱國(guó)義;毛裕芳;董小黎;李祖豪;;新型雪崩硅光二極管作為閃爍探測(cè)器讀出元件的應(yīng)用研究[A];第8屆全國(guó)核電子學(xué)與核探測(cè)技術(shù)學(xué)術(shù)年會(huì)論文集(一)[C];1996年

4 張承模;馬宇倩;王煥玉;吳枚;沈培若;李毅;徐玉朋;趙敏;白新華;;宇宙γ暴閃爍探測(cè)器研究[A];第8屆全國(guó)核電子學(xué)與核探測(cè)技術(shù)學(xué)術(shù)年會(huì)論文集(一)[C];1996年

5 范銳鋒;馬景芳;艾杰;文延偉;戴紅躍;;雙通道閃爍探測(cè)器探測(cè)中子技術(shù)[A];第十二屆全國(guó)核電子學(xué)與核探測(cè)技術(shù)學(xué)術(shù)年會(huì)論文集[C];2004年

6 楊其京;;巧用γ閃爍探測(cè)器的“坪”特性[A];中國(guó)計(jì)量協(xié)會(huì)冶金分會(huì)2008年會(huì)論文集[C];2008年

7 楊其京;;巧用γ閃爍探測(cè)器的“坪”特性[A];2008全國(guó)第十三屆自動(dòng)化應(yīng)用技術(shù)學(xué)術(shù)交流會(huì)論文集[C];2008年

8 孟丹;鄧長(zhǎng)明;程昶;任熠;宋稱心;劉蕓;王志剛;;兩種大面積塑料閃爍探測(cè)器的性能對(duì)比及工藝設(shè)計(jì)[A];第十四屆全國(guó)核電子學(xué)與核探測(cè)技術(shù)學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2008年

9 孟丹;鄧長(zhǎng)明;程昶;任熠;宋稱心;劉蕓;王志剛;;兩種大面積塑料閃爍探測(cè)器的性能對(duì)比及工藝設(shè)計(jì)[A];第十四屆全國(guó)核電子學(xué)與核探測(cè)技術(shù)學(xué)術(shù)年會(huì)論文集(1)[C];2008年

10 顏素娟;姚歷農(nóng);;一個(gè)新型的閃爍探測(cè)器活度測(cè)量系統(tǒng)[A];第8屆全國(guó)核電子學(xué)與核探測(cè)技術(shù)學(xué)術(shù)年會(huì)論文集(二)[C];1996年

相關(guān)博士學(xué)位論文 前1條

1 奚道明;數(shù)字閃爍探測(cè)器[D];華中科技大學(xué);2015年

相關(guān)碩士學(xué)位論文 前7條

1 王立宗;載~6Li塑料閃爍探測(cè)器性能研究[D];中國(guó)工程物理研究院;2004年

2 張偉杰;快定時(shí)閃爍探測(cè)器的研究及應(yīng)用[D];蘭州大學(xué);2013年

3 羅飛;低水平放射性氙探測(cè)技術(shù)研究[D];中國(guó)工程物理研究院;2014年

4 胡強(qiáng);雙維位置靈敏CsI(Tl)閃爍探測(cè)的性能研究[D];西南大學(xué);2008年

5 賈牧霖;基于硅PIN光電二極管袖珍式γ輻射計(jì)的設(shè)計(jì)與實(shí)現(xiàn)[D];成都理工大學(xué);2009年

6 肖明;輕便型自動(dòng)巖芯伽瑪掃描儀的研制[D];成都理工大學(xué);2011年

7 李星;基于能譜修正環(huán)境和防護(hù)水平γ劑量率儀的研制[D];成都理工大學(xué);2012年

,

本文編號(hào):2132974

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/yixuelunwen/swyx/2132974.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶4fc24***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com