天然氣水合物沉積物傳熱特性及對開采影響研究
[Abstract]:Natural gas hydrate is recognized as the most potential clean new energy in the world. At present, the research on hydrate exploration and exploitation in China is entering a critical breakthrough stage. The heat transfer characteristic has the vital influence and the control function to the hydrate high efficiency exploitation. This paper takes the high efficiency key problem in the hydrate mining process as the research background, aiming at the hydrate sediment effective thermal conductivity, the reservoir heat transfer factor. The variation of heat transfer in decomposition process and its influence on mining are studied. In order to investigate the thermal conductivity of hydrate sediments, an experimental method and system for in-situ measurement of effective thermal conductivity of hydrate in porous media at high pressure and low temperature were developed, and the effective thermal conductivity of hydrate sediments in different porosity and porous media was obtained. The variation of effective thermal conductivity under the action of saturation, temperature and other factors. Based on the experimental data of different dimensions, an empirical correlation formula for the effective thermal conductivity of hydrate sediments is established. It is proved that the empirical correlation can better predict the effective thermal conductivity of THF hydrate sediments and water-saturated sediments. The macroscopic heat transfer factors of reservoir in the process of hydrate sediment exploitation are systematically studied. The experimental results show that the thermal recovery process of gas hydrate is a thermal conductivity controlled decomposition mode, which proves that the thermal conductivity and exploitation temperature of sediment determine the recovery efficiency. The results show that the effect of high thermal conductivity porous media on hydrate decomposition is mainly reflected in the later stage of hydrate decomposition, which can increase the decomposition temperature, gas production rate and cumulative gas production rate of sediment, and inhibit the formation of ice. Furthermore, the extraction efficiency of hydrate is improved. Combined with the calculation of Ste, it is proved that the sensible heat of sediment controls the extraction efficiency of hydrates in the stage of rapid depressurization. The higher Ste can promote the decomposition of hydrates, raise the extraction temperature and restrain the phenomenon of ice formation in the stage of rapid depressurization. The promoting effect of sensible heat on hydrate is obviously weakened. It is found that Qov plays a leading role in controlling heat transfer and hydrate recovery efficiency in the later stage of depressurized mining, and that Qov can significantly improve the hydrate extraction efficiency. With the increase of hydrate saturation, the effect of Qov on mining is enhanced. However, with the increase of Qov, the promotion of hydrate becomes weaker and the recovery efficiency of hydrate decreases gradually. The influence mechanism of heat transfer in hydrate mining is discussed. The relationship between heat transfer effect and extraction efficiency of the three mining technologies is systematically compared and analyzed. It is proved that the sensible heat of sediment layer and the inhibition of ice formation are the key factors to improve the efficiency of depressurization mining. Energy utilization ratio and hydrate saturation are the key factors to determine the efficiency of heat injection extraction, and combined mining is the most promising mining technology for its considerable gas production efficiency. The variation of thermal conductivity in different stages of hydrate decomposition is obtained experimentally. It is found that the rate of hydrate decomposition and gas-water migration are the main factors controlling the variation of sediment thermal conductivity during hydrate decomposition. A method of in-situ measurement of heat transfer coefficient of hydrate decomposition process in porous medium at high pressure and low temperature was established. The synergistic variation of heat transfer coefficient with decomposition rate and gas production rate in hydrate sediment was obtained. The experimental results show that the change of phase state and gas-liquid flow are the main driving forces for the change of heat transfer coefficient in the process of hydrate decomposition. In the rapid decomposition stage of hydrate, the heat transfer coefficient increases rapidly with the decomposition of hydrate and gas output, and the heat transfer coefficient increases first and then decreases with the increase of Shi.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TE37
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 許紅,劉守全,王建橋,蔡乾忠;國際天然氣水合物調(diào)查研究現(xiàn)狀及其主要技術(shù)構(gòu)成[J];海洋地質(zhì)動(dòng)態(tài);2000年11期
2 方銀霞;;可燃燒的冰 天然氣水合物[J];船舶物資與市場;2000年06期
3 程思海,張欣,趙祖斌;天然氣水合物專題研討會簡介[J];巖礦測試;2001年04期
4 ;天然氣水合物──未來的新能源[J];焊接技術(shù);2001年04期
5 ;天然氣水合物——未來的新能源[J];化工建設(shè)工程;2001年01期
6 吳川;21世紀(jì)新能源——天然氣水合物[J];中國海上油氣.地質(zhì);2001年04期
7 金翔龍;天然氣水合物的研究現(xiàn)狀和未來展望(提綱)[J];天然氣地球科學(xué);2001年Z1期
8 王勝杰,韓小輝,郝妙莉,劉芙蓉;冰點(diǎn)以下天然氣水合物的生成動(dòng)力學(xué)研究[J];天然氣地球科學(xué);2001年Z1期
9 史斗;中國天然氣水合物研究揭開新的一頁——第160次香山學(xué)術(shù)討論會評述[J];天然氣地球科學(xué);2001年Z1期
10 吳克勤;;海底藏著巨量“天然氣”——天然氣水合物將成為21世紀(jì)新(?)源[J];海洋世界;2001年08期
相關(guān)會議論文 前10條
1 欒錫武;;天然氣水合物的上界面[A];中國地球物理·2009[C];2009年
2 雷興林;何麗娟;;神狐海域天然氣水合物形成聚集過程的數(shù)值模擬研究[A];中國地球物理2010——中國地球物理學(xué)會第二十六屆年會、中國地震學(xué)會第十三次學(xué)術(shù)大會論文集[C];2010年
3 盧振權(quán);;天然氣水合物開發(fā)利用前景淺析[A];第四屆全國青年地質(zhì)工作者學(xué)術(shù)討論會論文集[C];1999年
4 吳應(yīng)湘;;天然氣水合物的性質(zhì)、勘探及開采[A];西部大開發(fā) 科教先行與可持續(xù)發(fā)展——中國科協(xié)2000年學(xué)術(shù)年會文集[C];2000年
5 雷懷彥;王先彬;鄭艷紅;;天然氣水合物研究戰(zhàn)略與“西氣東輸”相關(guān)的問題[A];西部大開發(fā) 科教先行與可持續(xù)發(fā)展——中國科協(xié)2000年學(xué)術(shù)年會文集[C];2000年
6 韓月旺;蘇現(xiàn)波;;天然氣水合物的研究進(jìn)展[A];瓦斯地質(zhì)研究與應(yīng)用——中國煤炭學(xué)會瓦斯地質(zhì)專業(yè)委員會第三次全國瓦斯地質(zhì)學(xué)術(shù)研討會[C];2003年
7 許紅;劉守全;吳琳;蔡乾忠;閆桂京;孫和清;吳志強(qiáng);李剛;龔建明;;國際天然氣水合物調(diào)查研究實(shí)踐與資源經(jīng)濟(jì)戰(zhàn)略對策[A];中國地質(zhì)學(xué)會礦產(chǎn)地質(zhì)勘查專業(yè)委員會第四屆第一次學(xué)術(shù)研討會礦產(chǎn)地質(zhì)勘查論文集[C];2003年
8 陳多福;L.M.Cathles;;天然氣水合物穩(wěn)定性及對海底天然氣排放的控制[A];中國地球物理.2003——中國地球物理學(xué)會第十九屆年會論文集[C];2003年
9 王淑紅;顏文;;天然氣水合物的三大環(huán)境效應(yīng)[A];中國礦物巖石地球化學(xué)學(xué)會第九屆學(xué)術(shù)年會論文摘要集[C];2003年
10 張永勤;孫建華;趙海濤;劉秀美;王漢寶;;天然氣水合物保真取樣鉆具的試驗(yàn)研究及施工方案研究[A];海洋地質(zhì)、礦產(chǎn)資源與環(huán)境學(xué)術(shù)研討會論文摘要集[C];2006年
相關(guān)重要報(bào)紙文章 前10條
1 毛彬;天然氣水合物開發(fā)的利與弊[N];中國海洋報(bào);2004年
2 張衛(wèi)東;天然氣水合物:一朵帶刺的玫瑰[N];中國石化報(bào);2005年
3 記者 安豐;國家應(yīng)加強(qiáng)天然氣水合物勘查[N];地質(zhì)勘查導(dǎo)報(bào);2005年
4 記者胡創(chuàng)偉、張勇;臺灣西南海域發(fā)現(xiàn)“天然氣水合物”[N];人民日報(bào)海外版;2002年
5 記者 江書程;天然氣水合物將走進(jìn)我們生活[N];中國石油報(bào);2006年
6 張浩;俄研究天然氣水合物開采技術(shù)[N];科技日報(bào);2008年
7 趙艷霞;青島所天然氣水合物實(shí)驗(yàn)室擴(kuò)建[N];地質(zhì)勘查導(dǎo)報(bào);2009年
8 記者 張立;我國成功申辦第八屆國際天然氣水合物大會[N];中國礦業(yè)報(bào);2011年
9 通訊員 楊惠晴 特約記者 曹雪晴;青島所建部天然氣水合物重點(diǎn)實(shí)驗(yàn)室[N];中國國土資源報(bào);2012年
10 記者 王少勇;第八屆國際天然氣水合物大會終身成就獎(jiǎng)和青年獎(jiǎng)揭曉[N];中國國土資源報(bào);2014年
相關(guān)博士學(xué)位論文 前10條
1 Muhammad Irfan Ehsan;巴基斯坦近海莫克蘭增生楔含水合物地層地震響應(yīng)特征研究[D];中國地質(zhì)大學(xué)(北京);2016年
2 李廣才;地震疊前AVO反演與天然氣水合物識別研究[D];中國地質(zhì)大學(xué)(北京);2015年
3 程傳曉;天然氣水合物沉積物傳熱特性及對開采影響研究[D];大連理工大學(xué);2015年
4 鄔黛黛;南海天然氣水合物的早期成巖作用和地球化學(xué)特性研究[D];浙江大學(xué);2008年
5 馬立杰;利用衛(wèi)星遙感探測海域天然氣水合物[D];中國科學(xué)院研究生院(海洋研究所);2005年
6 郭威;天然氣水合物孔底冷凍取樣方法的室內(nèi)試驗(yàn)及傳熱數(shù)值模擬研究[D];吉林大學(xué);2007年
7 賈瑞;天然氣水合物熱管式孔底快速冷凍機(jī)構(gòu)及蒸汽法試開采試驗(yàn)研究[D];吉林大學(xué);2013年
8 王志遠(yuǎn);含天然氣水合物相變的環(huán)空多相流流型轉(zhuǎn)化機(jī)制研究[D];中國石油大學(xué);2009年
9 張凌;天然氣水合物賦存地層鉆井液試驗(yàn)研究[D];中國地質(zhì)大學(xué);2006年
10 孫璐;天然氣水合物準(zhǔn)三維處理技術(shù)研究與應(yīng)用[D];中國地質(zhì)大學(xué)(北京);2009年
相關(guān)碩士學(xué)位論文 前10條
1 高偉;天然氣水合物相平衡及其表面張力影響研究[D];東南大學(xué);2005年
2 張凌;天然氣水合物鉆進(jìn)時(shí)井內(nèi)溫度分布模型研究[D];中國地質(zhì)大學(xué);2003年
3 盛堰;水深通信技術(shù)在海底天然氣水合物成藏環(huán)境監(jiān)測中的應(yīng)用[D];華南理工大學(xué);2010年
4 劉健;天然氣水合物鉆探取樣保真器結(jié)構(gòu)研究[D];中國石油大學(xué);2010年
5 鄒常偉;青海南祁連木里地區(qū)天然氣水合物評價(jià)方法對比研究[D];中國地質(zhì)大學(xué)(北京);2015年
6 陳曉慶;置換結(jié)合降壓法開采天然氣水合物的實(shí)驗(yàn)研究[D];大連理工大學(xué);2015年
7 欒奕;南海北部神狐海域天然氣水合物的地球物理識別及成因機(jī)理探討[D];中國科學(xué)院研究生院(海洋研究所);2015年
8 李攀峰;基于天然氣水合物勘探的海水溶解甲烷地球化學(xué)特征和提取技術(shù)研究[D];中國地質(zhì)大學(xué)(北京);2012年
9 張志冰;海水中甲烷濃度原位地球化學(xué)探測系統(tǒng)的研發(fā)與應(yīng)用[D];中國地質(zhì)大學(xué)(北京);2013年
10 梁裕揚(yáng);瓊東南盆地天然氣水合物成礦地質(zhì)條件分析及識別新方法應(yīng)用[D];中國地質(zhì)大學(xué)(北京);2011年
,本文編號:2302380
本文鏈接:http://www.lk138.cn/kejilunwen/shiyounenyuanlunwen/2302380.html