超導(dǎo)磁儲(chǔ)能在微電網(wǎng)中的應(yīng)用研究
[Abstract]:With the development of superconducting power technology, more and more superconducting power equipments are born. Superconducting magnetic energy storage (SMES) system can store electric energy for a long time, efficiently and without loss, and can operate in four quadrants by decoupling control. It can adjust the active power and reactive power in real time and independently. A complete SMES system consists of five parts, namely, refrigeration system, superconducting magnet, magnet loss protection, current converter, detection control system, according to the different topology and control methods of the main circuit of the current converter. It can be divided into current source SMES and voltage source SMES, to control the current size and phase between SMES and power network to adjust the exchange of reactive power and active power. For the voltage source type SMES, the active and reactive power output is controlled by controlling the amplitude and phase of the fundamental voltage at the AC side of the current converter. The amplitude and phase of AC side current or voltage are controlled by these two types of SMES current converters based on the corresponding pulse width modulation (PWM) strategy. In this paper, based on Yunnan power grid science and technology project, "the application of microgrid HTS magnetic energy storage system in the demonstration project of cloud electric science park", the SMES system based on microgrid transportation is studied with current source type SMES as the research object. The PSCAD model of microgrid including SMES system is established to provide short time power supply, fault time buffer, improve the power quality of microgrid, and smooth switching between microgrid and main grid. To optimize the operation of DG and improve the operation economy of microgrid are verified by simulation. The simulation results show that SMES can support the voltage sag in the microgrid and use PQ control when the microgrid is connected to the grid. In the isolated island state, the VF control can guarantee the stability of the microgrid under different operation conditions. In addition, SMES greatly improves the economy of microgrid when it completes the distributed energy allocation, which has a considerable advantage compared with other micro-grid energy storage, and provides a reference for the practical application of SMES in microgrid.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM727
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙平,張華民,周漢濤,衣寶廉;我國(guó)液流儲(chǔ)能電池研究概況[J];電池工業(yè);2005年02期
2 劉遜,褚旭,蔣曉華;超導(dǎo)儲(chǔ)能裝置中的電流源型逆變器[J];電力電子技術(shù);2004年04期
3 李少林;姚國(guó)興;;風(fēng)光互補(bǔ)發(fā)電蓄電池超級(jí)電容器混合儲(chǔ)能研究[J];電力電子技術(shù);2010年02期
4 唐躍進(jìn),李敬東,葉妙元,王惠齡,程時(shí)杰,潘垣;未來電力系統(tǒng)中的超導(dǎo)技術(shù)[J];電力系統(tǒng)自動(dòng)化;2001年02期
5 李艷,程時(shí)杰,潘垣,唐躍進(jìn);電壓源型超導(dǎo)磁儲(chǔ)能裝置特性的全時(shí)域仿真研究[J];電力系統(tǒng)自動(dòng)化;2002年18期
6 魯鴻毅;何奔騰;;超級(jí)電容器在微型電網(wǎng)中的應(yīng)用[J];電力系統(tǒng)自動(dòng)化;2009年02期
7 陳偉;石晶;任麗;唐躍進(jìn);石延輝;;微網(wǎng)中的多元復(fù)合儲(chǔ)能技術(shù)[J];電力系統(tǒng)自動(dòng)化;2010年01期
8 余江,曾建平;超導(dǎo)電力設(shè)備失超對(duì)電力系統(tǒng)的影響[J];電力自動(dòng)化設(shè)備;2002年04期
9 田軍;朱永強(qiáng);陳彩虹;;儲(chǔ)能技術(shù)在分布式發(fā)電中的應(yīng)用[J];電氣技術(shù);2010年08期
10 楊勇;超導(dǎo)技術(shù)的發(fā)展及其在電力系統(tǒng)中的應(yīng)用[J];電網(wǎng)技術(shù);2001年09期
,本文編號(hào):2312774
本文鏈接:http://www.lk138.cn/kejilunwen/dianlilw/2312774.html