基于改進(jìn)Hilbert-Huang變換的電動機轉(zhuǎn)子不平衡故障診斷
[Abstract]:In modern industrial production, motor as the main operating parts, its normal work directly related to the quality of the whole industrial production. Rotor unbalance fault is a common type of motor fault, which is not easy to detect and has great harm. Therefore, it is of great theoretical significance and practical economic value to study the rotor unbalance fault diagnosis technology in order to diagnose the rotor unbalance fault in the early stage and to prevent the further deterioration of the unbalanced fault. In this paper, the development of rotor unbalance fault diagnosis and the research status of vibration analysis methods are first described in this paper. The method of Hilbert-Huang transform includes two processes: empirical mode decomposition (EMD) and Hilbert spectrum analysis. EMD can deal with nonlinear and non-nonlinear faults. Smooth signals are decomposed very well, To obtain the expected eigenmode function (IMF); By Hilbert transform of IMF, the spectrum and marginal spectrum of the signal can be obtained, and then the unbalanced fault signal of rotor can be analyzed. Secondly, aiming at the endpoint effect of Hilbert-Huang transform in the process of signal empirical mode decomposition, based on the research of the traditional method of suppressing the end point effect, An improved endpoint continuation method based on image extension and support vector regression machine is proposed. The improved method first uses the support vector regression machine to predict the extreme point data sequence of the original signal, and then uses the image continuation method to determine the location of the predicted extremum point. It solves the problems of inaccurate prediction of long data series by support vector regression machine and poor processing effect of image continuation method for short data sequences whose endpoints are not extreme points. The qualitative comparison between the improved method and the traditional endpoint continuation method is carried out through simulation experiments. The results show that the improved method can suppress the endpoint effect generated by the empirical mode decomposition (EMD). Then, the improved Hilbert-Huang transform method is used to diagnose and analyze the unbalanced fault of the motor rotor, and the characteristics of the unbalanced fault signal can be extracted from the obtained IMF diagram and the Hilbert marginal spectrum. Finally, combined with the improved method of Hilbert-Huang transform proposed in this paper, a fault diagnosis system for rotor unbalance of motor based on LabVIEW is designed. Through experimental analysis, the system can effectively diagnose the unbalanced fault of motor rotor.
【學(xué)位授予單位】:河南理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM307
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 皇甫玉莉;內(nèi)置式管道電動機轉(zhuǎn)子疊壓胎具的工藝改進(jìn)[J];中小型電機;1998年04期
2 ;近期期刊有關(guān)文獻(xiàn)索引[J];變流技術(shù)與電力牽引;2002年04期
3 吳凱令;翁亞白;;新型鋁合金用于電動機轉(zhuǎn)子材料的研究[J];電動工具;2006年04期
4 吳順海;;異步牽引電動機轉(zhuǎn)子多物理耦合場有限元分析與優(yōu)化[J];電力機車與城軌車輛;2011年03期
5 王君文;;電動機轉(zhuǎn)子動平衡系統(tǒng)誤差來源分析[J];科技創(chuàng)新導(dǎo)報;2012年09期
6 曹興國;楊秀玲;莊心偉;;電動機轉(zhuǎn)子中頻焊吊具的設(shè)計[J];電機技術(shù);2012年03期
7 李鐵軍;黃小紅;小野田勉;;高速大容量發(fā)電電動機轉(zhuǎn)子設(shè)計[J];西北水電;2012年S1期
8 М·З·日洛可娃;吳霞芳;;充填液體的電動機轉(zhuǎn)子磨耗計算[J];艦船特輔機電設(shè)備;1977年03期
9 陸佳政,郭景斌,張自評;電動機轉(zhuǎn)子故障檢測原理及檢測裝置研究[J];湖南電力;1997年04期
10 陳文,徐莉莉,湛磊;幾種同步電動機轉(zhuǎn)子加工[J];機械工程師;1999年05期
相關(guān)會議論文 前2條
1 范洪路;;鼠籠式電動機轉(zhuǎn)子鐵芯松動處理方法[A];全國火電100MW級機組技術(shù)協(xié)作會第五屆年會論文集[C];2006年
2 劉琳琳;戈寶軍;張志強;;變頻電動機轉(zhuǎn)子三維溫度場計算及槽形影響分析[A];2011中國電工技術(shù)學(xué)會學(xué)術(shù)年會論文集[C];2011年
相關(guān)重要報紙文章 前2條
1 江西 陶波;繞線式電動機轉(zhuǎn)子配對稱電阻與不對稱電阻計算方法[N];電子報;2014年
2 文慧;大容量智能化變頻在球磨機上應(yīng)用[N];中國建材報;2010年
相關(guān)博士學(xué)位論文 前1條
1 宋練鵬;軌道交通用牽引電動機轉(zhuǎn)子銅合金部件制備及其相關(guān)基礎(chǔ)研究[D];中南大學(xué);2008年
相關(guān)碩士學(xué)位論文 前3條
1 裴宏雷;異步電動機轉(zhuǎn)子在軸承彈性支承下的電磁振動[D];燕山大學(xué);2011年
2 王乾;基于改進(jìn)Hilbert-Huang變換的電動機轉(zhuǎn)子不平衡故障診斷[D];河南理工大學(xué);2014年
3 汪凱;感應(yīng)電動機轉(zhuǎn)子和軸承故障檢測方法研究[D];天津理工大學(xué);2011年
,本文編號:2307254
本文鏈接:http://www.lk138.cn/kejilunwen/dianlilw/2307254.html