并網(wǎng)光伏發(fā)電系統(tǒng)無功電壓控制研究
本文關(guān)鍵詞: 并網(wǎng)光伏系統(tǒng) 逆變器 無功電壓控制 協(xié)調(diào)控制 靈敏度 出處:《重慶大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著能源可持續(xù)發(fā)展戰(zhàn)略的推進,光伏發(fā)電技術(shù)迅速發(fā)展,從基礎(chǔ)科學(xué)的研究到工程實踐,光伏發(fā)電儼然已成為當今電力科學(xué)中最為活躍的研究領(lǐng)域之一。由于光伏發(fā)電在電網(wǎng)電源中比例不斷增大,圍繞光伏并網(wǎng)問題的研究課題也越來越受關(guān)注。本文分析光伏并網(wǎng)點靜態(tài)電壓穩(wěn)定性問題,通過懫取無功電壓控制策略,改善并網(wǎng)點的電壓穩(wěn)定性,提高電網(wǎng)接納光伏能力。 根據(jù)裝機容量與并網(wǎng)電壓等級不同,并網(wǎng)光伏系統(tǒng)分為分布式光伏發(fā)電并網(wǎng)系統(tǒng)與大型光伏電站。本文首先分析了并網(wǎng)光伏系統(tǒng)有功、無功出力變化對并網(wǎng)點電壓的影響,并網(wǎng)光伏逆變器應(yīng)發(fā)出一定的無功功率支撐電網(wǎng)電壓。并對系統(tǒng)內(nèi)部單個逆變器的數(shù)學(xué)模型、向量圖、無功出力極限等理論進行了分析,在兩相靜止坐標系下,建立單個逆變器整體控制框圖,系統(tǒng)控制包括有功控制、無功獨立控制、電流控制、電壓畸變和不平衡時控制方法,,為后續(xù)并網(wǎng)光伏發(fā)電系統(tǒng)的無功電壓控制研究奠定基礎(chǔ)。 在分布式光伏發(fā)電系統(tǒng)背景下,僅以并網(wǎng)逆變器作為靈活可控的無功源。從電網(wǎng)電壓降落角度研究光伏發(fā)電接入電網(wǎng)前后并網(wǎng)點電壓的變化,并深入分析了德國電氣工程師協(xié)會提出的幾種分布式光伏系統(tǒng)無功電壓控制策略,在此基礎(chǔ)上提出一種基于并網(wǎng)點電壓幅值與光伏有功出力的Q(U,P)無功功率控制策略,在該控制策略下,光伏系統(tǒng)所有逆變器參與電網(wǎng)電壓調(diào)節(jié),在維持電網(wǎng)電壓在要求范圍的前提下,無功吸收總量最低,電網(wǎng)有功、無功損耗最小。 在大型光伏電站背景下,以并網(wǎng)逆變器與無功補償裝置SVG作為無功源。本文首先詳細介紹了大型光伏電站的實際模型,研究了大型光伏電站對電網(wǎng)電壓靜態(tài)穩(wěn)定性的影響。再次,根據(jù)并網(wǎng)點電壓幅值Q(U)策略整定光伏電站實時無功差額,進而在光伏發(fā)電單元與無功補償裝置之間協(xié)調(diào)分配,以維持并網(wǎng)點電壓的穩(wěn)態(tài)運行。為減小電站內(nèi)部集電線路無功傳輸,降低功率損耗,無功控制中優(yōu)先考慮無功補償裝置。當無功補償裝置滿發(fā)時,將剩余無功功率分配給各光伏發(fā)電單元,光伏發(fā)電單元之間的無功分配結(jié)合了電壓/無功靈敏度的分析,在靈敏度基礎(chǔ)上確定了光伏發(fā)電單元的無功輸出,由此提高了光伏電站的調(diào)壓能力。 本文詳細分析不同類型并網(wǎng)光伏發(fā)電系統(tǒng)對電網(wǎng)電壓靜態(tài)穩(wěn)定性的影響,并針對各自的結(jié)構(gòu)特點對其進行無功電壓控制,為提高光伏系統(tǒng)匯集地區(qū)系統(tǒng)的電壓穩(wěn)定性與增大光伏系統(tǒng)在電網(wǎng)中的滲透率奠定了理論基礎(chǔ)和決策支持。
[Abstract]:With the promotion of sustainable energy development strategy, photovoltaic power generation technology has developed rapidly, from basic science research to engineering practice. Photovoltaic power generation has become one of the most active research fields in power science. In this paper, the static voltage stability of photovoltaic network is analyzed, and the voltage stability of parallel network is improved by taking reactive voltage control strategy. Improve the grid capacity to accept photovoltaic. According to the different installed capacity and grid-connected voltage grade, grid-connected photovoltaic system is divided into distributed photovoltaic generation grid-connected system and large-scale photovoltaic power station. Firstly, the active power of grid-connected photovoltaic system is analyzed. The influence of reactive power output on the voltage of parallel grid, the grid-connected photovoltaic inverter should issue a certain reactive power to support the grid voltage, and the mathematical model of a single inverter in the system, vector diagram. The theory of reactive power limit is analyzed, and a single inverter control block diagram is established in two-phase static coordinate system. The system control includes active power control, reactive power independent control and current control. The control method of voltage distortion and unbalance lays a foundation for the research of reactive power and voltage control in grid-connected photovoltaic power generation system. In the background of distributed photovoltaic generation system, only grid-connected inverter is used as a flexible and controllable reactive power source. Several reactive power and voltage control strategies of distributed photovoltaic system proposed by the German Electrical Engineers Association are analyzed in depth. On this basis, a QU based on the amplitude of the parallel dot voltage and the active power of the photovoltaic system is proposed. Under the control strategy, all inverters of photovoltaic system participate in the regulation of grid voltage, under the premise of maintaining the grid voltage in the required range, the total amount of reactive power absorption is the lowest, and the power grid is active. Minimum reactive power loss. Under the background of large-scale photovoltaic power station, grid-connected inverter and reactive power compensator SVG are used as reactive power source. Firstly, the practical model of large-scale photovoltaic power station is introduced in detail. The influence of large-scale photovoltaic power station on the static stability of power grid voltage is studied. Thirdly, the real-time reactive power difference of photovoltaic power station is adjusted according to the amplitude of parallel voltage QUU. In order to reduce the reactive power transmission and reduce the power loss, the photovoltaic unit and the reactive power compensator are distributed harmoniously in order to maintain the steady operation of the parallel network voltage in order to reduce the reactive power transmission of the collector line in the power station. In the reactive power control, the reactive power compensation device is given priority. When the reactive power compensation device is full, the residual reactive power is allocated to each photovoltaic power generation unit. The reactive power distribution among photovoltaic units is combined with the analysis of voltage / reactive sensitivity. Based on the sensitivity, the reactive power output of photovoltaic power generation unit is determined, which improves the voltage regulation ability of photovoltaic power station. In this paper, the influence of different types of grid-connected photovoltaic power generation system on the static stability of grid voltage is analyzed in detail, and reactive power and voltage control is carried out according to their structural characteristics. It lays a theoretical foundation and decision support for improving the voltage stability and increasing the permeability of photovoltaic system in converging area.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM615;TM761.1
【參考文獻】
相關(guān)期刊論文 前10條
1 汪海寧,蘇建徽,張國榮,茆美琴,丁明;光伏并網(wǎng)發(fā)電及無功補償?shù)慕y(tǒng)一控制[J];電工技術(shù)學(xué)報;2005年09期
2 張承慧;葉穎;陳阿蓮;杜春水;;基于輸出電流控制的光伏并網(wǎng)逆變電源[J];電工技術(shù)學(xué)報;2007年08期
3 韓民曉;劉迅;;分布式電源并網(wǎng)中電能質(zhì)量相關(guān)規(guī)范探討[J];電力設(shè)備;2007年01期
4 喬穎;魯宗相;徐飛;;雙饋風(fēng)電場自動電壓協(xié)調(diào)控制策略[J];電力系統(tǒng)自動化;2010年05期
5 陳毅東;楊育林;王立喬;孫俊杰;萬承寬;;電網(wǎng)不對稱故障時全功率變流器風(fēng)電機組控制策略[J];電力系統(tǒng)自動化;2011年07期
6 趙爭鳴;雷一;賀凡波;魯宗相;田琦;;大容量并網(wǎng)光伏電站技術(shù)綜述[J];電力系統(tǒng)自動化;2011年12期
7 李響;王志新;劉文晉;;海上風(fēng)電柔性直流輸電變流器的研究與開發(fā)[J];電力自動化設(shè)備;2009年02期
8 龍源;李國杰;程林;孫元章;;利用光伏發(fā)電系統(tǒng)抑制電網(wǎng)功率振蕩的研究[J];電網(wǎng)技術(shù);2006年24期
9 許洪華;;中國光伏發(fā)電技術(shù)發(fā)展研究(英文)[J];電網(wǎng)技術(shù);2007年20期
10 秦濤;呂躍剛;徐大平;;采用雙饋機組的風(fēng)電場無功功率控制技術(shù)[J];電網(wǎng)技術(shù);2009年02期
本文編號:1469467
本文鏈接:http://www.lk138.cn/kejilunwen/dianlilw/1469467.html