中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁 > 科技論文 > 材料論文 >

雙步球磨與放電等離子燒結(jié)Cu-Cr復(fù)合材料的組織和性能研究

發(fā)布時(shí)間:2018-08-13 19:05
【摘要】:純銅的導(dǎo)電和導(dǎo)熱性能高,是廣泛應(yīng)用于電工器件和導(dǎo)熱器材的功能材料。然而,由于其強(qiáng)度和硬度較低,在使用過程中容易因力學(xué)性能不足而發(fā)生變形,并最終導(dǎo)致失效,因此大大限制了其在實(shí)際中的應(yīng)用。針對(duì)以上問題,本論文以商用Cr粉作為增強(qiáng)相,制備Cr顆粒增強(qiáng)Cu基復(fù)合材料,通過雙步球磨(機(jī)械研磨 機(jī)械合金化)與放電等離子燒結(jié)制備高強(qiáng)高硬Cu-Cr復(fù)合材料,對(duì)拓寬Cu基復(fù)合材料的應(yīng)用領(lǐng)域具有重要意義。首先,本文分別對(duì)商用Cu粉和Cr粉在干和濕兩種條件下進(jìn)行機(jī)械研磨處理。結(jié)果表明,兩種條件下機(jī)械研磨后的Cu粉粒度均增大,濕磨能夠有效抑制其顆粒的顯著粗化,并使Cu粉由樹枝狀轉(zhuǎn)變?yōu)槠瑺罘垠w,而干磨則導(dǎo)致其嚴(yán)重粗化,形成粗大的球狀顆粒。對(duì)于Cr粉,在兩種條件下進(jìn)行機(jī)械研磨均能夠?qū)崿F(xiàn)其顆粒的細(xì)化,而干磨所獲得的Cr粉比濕磨更細(xì),且干磨后Cr粉保持不規(guī)則形狀,濕磨后則轉(zhuǎn)變?yōu)槠瑺罘垠w。采用機(jī)械研磨能夠制備納米晶Cu粉和Cr粉。與濕磨相比,干磨所獲得的晶粒尺寸更小。本文對(duì)Cu粉和Cr粉的機(jī)械研磨機(jī)理進(jìn)行了探究,并分析了在濕磨和干磨條件下兩種金屬粉末形態(tài)與結(jié)構(gòu)的差異。其次,將預(yù)球磨Cu粉與原始Cr粉、原始Cu粉與預(yù)球磨Cr粉分別進(jìn)行機(jī)械合金化處理,以制備Cu-8 at.%Cr復(fù)合粉末。為了進(jìn)行對(duì)比,在相同實(shí)驗(yàn)條件下對(duì)原始Cu粉與原始Cr粉進(jìn)行機(jī)械合金化處理。實(shí)驗(yàn)表明,相比未經(jīng)預(yù)球磨處理以及單獨(dú)預(yù)球磨Cu粉,單獨(dú)預(yù)球磨Cr粉能夠制備更細(xì)小的復(fù)合粉末,同時(shí)能獲得較高的出粉率、更窄的粉末粒度分布、更小的晶粒尺寸以及更高的Cr固溶度,因此該復(fù)合粉末具有廣闊的應(yīng)用前景。本文深入研究了Cu-Cr復(fù)合粉末的機(jī)械合金化機(jī)制,包括形態(tài)的轉(zhuǎn)變、晶粒的細(xì)化以及固溶度的變化,以分析預(yù)球磨處理對(duì)后續(xù)機(jī)械合金化過程中該復(fù)合粉末形態(tài)和結(jié)構(gòu)的影響。最后,對(duì)所制備的Cu-8 at.%Cr復(fù)合粉末進(jìn)行放電等離子燒結(jié)處理。采用掃描電子顯微鏡,透射電子顯微鏡和X射線衍射技術(shù)對(duì)燒結(jié)塊體復(fù)合材料的組織與結(jié)構(gòu)進(jìn)行分析。利用壓縮和維氏硬度試驗(yàn)表征該材料的力學(xué)性能。結(jié)果顯示,相比未經(jīng)預(yù)球磨處理以及單獨(dú)預(yù)球磨Cu粉,單獨(dú)預(yù)球磨Cr粉所制備的復(fù)合材料中Cu基體的晶粒較細(xì)小,其平均晶粒尺寸約為82 nm。該復(fù)合材料在保持一定的致密度和電學(xué)性能的前提下,具有較高的力學(xué)性能,其維氏硬度、壓縮屈服強(qiáng)度和壓縮率分別是327 HV、1049 MPa和10.4%。優(yōu)異的力學(xué)性能主要是由于Cr顆粒的彌散強(qiáng)化、Cu基體的細(xì)晶強(qiáng)化以及較強(qiáng)的Cu/Cr結(jié)合界面。
[Abstract]:Pure copper with high conductivity and thermal conductivity is widely used as functional materials for electrical devices and thermal conductive devices. However, because of its low strength and hardness, it is easy to deform due to the lack of mechanical properties in the process of use, and ultimately lead to failure, so its application in practice is greatly limited. To solve the above problems, the commercial Cr powder was used as the reinforcing phase to prepare the cr particle reinforced Cu matrix composites. The high strength and high hard Cu-Cr composites were prepared by double step ball milling (mechanical grinding and mechanical alloying) and spark plasma sintering (SPS). It is of great significance to widen the application field of Cu matrix composites. Firstly, the commercial Cu powder and Cr powder were milled under dry and wet conditions, respectively. The results show that the particle size of Cu powder increases after mechanical grinding under both conditions. Wet grinding can effectively inhibit the obvious coarsening of Cu powder and change Cu powder from dendritic to flake powder, while dry grinding results in serious coarsening. Forming coarse globular particles. For Cr powder, the particle size can be refined by mechanical grinding under both conditions, while the Cr powder obtained by dry grinding is finer than that obtained by wet grinding, and the Cr powder keeps irregular shape after dry grinding, and changes to flake powder after wet grinding. Nanocrystalline Cu and Cr powders can be prepared by mechanical grinding. The grain size of dry mill is smaller than that of wet mill. In this paper, the mechanism of mechanical grinding of Cu powder and Cr powder is studied, and the differences of morphology and structure of the two kinds of metal powder under wet and dry grinding conditions are analyzed. Secondly, Cu-8 at.%Cr composite powder was prepared by mechanical alloying of premilled Cu powder and original Cr powder, original Cu powder and premilled Cr powder. In order to compare, the original Cu powder and the original Cr powder were treated by mechanical alloying under the same experimental conditions. The experimental results show that compared with Cu powder without pre-milling and single pre-milling, Cr powder prepared by pre-milling alone can produce smaller composite powder and obtain higher powder yield and narrower particle size distribution. Because of the smaller grain size and higher Cr solubility, the composite powder has a broad application prospect. In this paper, the mechanism of mechanical alloying of Cu-Cr composite powder is studied in depth, including morphology transformation, grain refinement and the change of solid solubility, in order to analyze the effect of pre-milling on the morphology and structure of the composite powder during subsequent mechanical alloying. Finally, the Cu-8 at.%Cr composite powder was sintered by spark plasma sintering. The microstructure and structure of sintered bulk composites were analyzed by scanning electron microscope, transmission electron microscope and X-ray diffraction. The mechanical properties of the material were characterized by compression and Vickers hardness test. The results show that the grain size of Cu matrix prepared by single premilled Cr powder is smaller than that of Cu powder prepared without or without premilling. The average grain size of Cu matrix is about 82 nm. The composite has high mechanical properties on the premise of keeping certain densification and electrical properties. Its Vickers hardness, compressive yield strength and compression ratio are 327HV1049 MPa and 10.4 MPa, respectively. The excellent mechanical properties are mainly due to the dispersion strengthening of Cr particles and the fine grain strengthening of Cu matrix and the strong Cu/Cr bonding interface.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB331

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 楊俊逸;李小強(qiáng);郭亮;陳維平;李元元;;放電等離子燒結(jié)(SPS)技術(shù)與新材料研究[J];材料導(dǎo)報(bào);2006年06期

2 劉珍,梁偉,許并社,市野瀨英喜;納米材料制備方法及其研究進(jìn)展[J];材料科學(xué)與工藝;2000年03期

3 肖樹龍;田竟;徐麗娟;陳玉勇;于宏寶;韓杰才;張德良;;雙步球磨與放電等離子燒結(jié)制備細(xì)晶TiAl合金[J];稀有金屬材料與工程;2011年05期

4 孟飛,裴燕斌,果世駒;軋制對(duì)納米碳管彌散強(qiáng)化銅基復(fù)合材料微觀組織的影響[J];粉末冶金材料科學(xué)與工程;2005年01期

5 劉貴民;李斌;杜建華;宋婭玲;;不同納米相增強(qiáng)銅基復(fù)合材料的性能[J];粉末冶金材料科學(xué)與工程;2010年05期

6 張久興,劉科高,周美玲;放電等離子燒結(jié)技術(shù)的發(fā)展和應(yīng)用[J];粉末冶金技術(shù);2002年03期

7 白玲;葛昌純;沈衛(wèi)平;;放電等離子燒結(jié)技術(shù)[J];粉末冶金技術(shù);2007年03期

8 鄒正光,李金蓮,陳寒元;高能球磨在復(fù)合材料制備中的應(yīng)用[J];桂林工學(xué)院學(xué)報(bào);2002年02期

9 Mahmood Sameezadeh;Hassan Farhangi;Massoud Emamy;;Structural characterization of AA 2024-MoSi_2 nanocomposite powders produced by mechanical milling[J];International Journal of Minerals Metallurgy and Materials;2013年03期

10 陳君平,施雨湘,張凡,韓鈺;高能球磨中的機(jī)械合金化機(jī)理[J];機(jī)械;2004年03期

相關(guān)博士學(xué)位論文 前4條

1 張家濤;高性能Cu-Cr(Zr、Mg)自生復(fù)合材料研究及其應(yīng)用[D];昆明理工大學(xué);2001年

2 王曉峰;深冷處理的Cu-Cr-Zr電極合金組織與性能研究[D];天津大學(xué);2006年

3 慕思國(guó);高強(qiáng)高導(dǎo)Cu-Cr-Zr系合金制備新工藝及理論研究[D];中南大學(xué);2008年

4 彭麗軍;Cu-Cr-Zr系合金微觀組織演變規(guī)律及合金元素交互作用機(jī)理的研究[D];北京有色金屬研究總院;2014年

,

本文編號(hào):2181900

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/kejilunwen/cailiaohuaxuelunwen/2181900.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c7494***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com