基于電紡纖維網(wǎng)絡(luò)構(gòu)筑的導(dǎo)電高分子復(fù)合材料及其應(yīng)變敏感性能研究
[Abstract]:The structure and performance regulation of conductive polymer composites (CPCs) is one of the hot topics in the field of polymer materials. Recently, the widespread concern of the researchers is that.CPCs is widely used in the resistance strain sensor, and is widely used in the fields of electronic skin, human motion monitoring and material destruction monitoring. This paper is based on the structure of CPCs. The preparation method of CPCs based strain sensor containing prefabricated conductive functionalized electrostatic spinning fiber network is proposed. The morphological structure characteristics and tensile sensitivity of the material are studied. The main results are as follows: 1, the CPCsCNTs with carbon nanotube (CNTs) modified electrospun fiber network is excellent. Electrical and mechanical properties are important fillers for the preparation of CPCs. However, it is difficult to produce CNTs filled CPCs. with good electrical, mechanical and strain sensitivity by traditional melting or solution blending. The mechanism of this phenomenon is mainly because the CNTs filled CPCs is used as a strain sensor, in order to obtain an excellent response signal with excellent repeatability. The required CNTs content is usually high, and at high content, CNTs is very easy to reunite and eventually lead to the loss of mechanical properties. Therefore, how to prepare a CPCs based strain sensor with excellent comprehensive properties is still a challenge in this field. A novel method of preparing CNTs filled CPCs is proposed in this paper, which refers to the use of polymer solution. The prefabricated CNTs modified nylon 6 (PA6) electrospun fiber membrane was embedded in the matrix of polyvinyl alcohol (PVA). By this method, the CPCs based strain sensor with excellent electrical, mechanical and strain sensitive properties was easily obtained. We modified CNTs on the surface of PA6 electrospun fiber by ultrasonic method, and prefabricated the electrical fiber network with conductive function in advance. The electrical, mechanical and tensile properties of the CNTs-PA6 conductive fiber film are also studied. The special distribution of CNTs on the surface of PA6 fiber can improve the interfacial bonding between the PA6 fiber and the PVA matrix, in addition to effectively improving the conductivity of the composite, thus providing the possibility of increasing the tensile energy of the matrix material. The increase of the CNTs-PA6 fiber film layer is added. The number can further improve the electrical properties of the composites, and the corresponding results provide the experimental basis for the control of the tensile sensitivity of CNTs-PA6/PVA composites. However, it will have an adverse effect on the mechanical properties of the materials. Finally, we choose the optimum selection of the composite material containing two layers of CNTs-PA6 fiber membrane (CNTs-PA62/PVA) as the research object. The response curves of the uniaxial tension are phased, and each stage corresponds to the different structural failure models. The corresponding model is analyzed in detail. The cyclic tensile test results show that the CNTs-PA62/PVA composite exhibits a distinct response behavior at different deformation levels, such as the maximum cyclic response degree (Rmax/R0) offset. There is a large difference between the degree and the peak intensity of the acromion, which can be used as a self diagnostic index to analyze the internal structural damage of the composite. Furthermore, the repeatability of the tensile response behavior of the composites can be significantly improved by the multiple tensile / recovery cycle and pretension treatment, and the CPCsCB of the carbon black (CB) modified electrospun fiber network has a lower CPCsCB. In the dimension (Ling Wei), the conductive network it constructs often has a sensitive response to the external field stimulation. Therefore, we use the CB instead of CNTs to produce a CB-PA6/PVA composite containing a layer of fiber membrane by the same preparation process. The tensile response behavior of the composite is studied in detail. The results show that the CB-PA6/PVA composite has a good response. Stable response signals and good repeatability and durability are suitable for use as strain sensors. We also found that the difference in the structure of CB and CNTs leads to the difference in the construction mode of the conductive network, which makes the tensile sensitivity of the corresponding composite system greatly different. Sensors have an important guiding role.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB332;TQ340.64
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳鳳清,任輝,鄒博,王竹儀,張彤,鄒樂輝,徐寶琨;納米TiO_2的制備及對(duì)三甲胺氣體的敏感性能[J];物理化學(xué)學(xué)報(bào);2005年05期
2 李蕾;曲鳳玉;;介孔二氧化錫材料的合成及其乙醇敏感性能的研究[J];哈爾濱師范大學(xué)自然科學(xué)學(xué)報(bào);2013年01期
3 賴小林;孫成棟;趙文軍;文彬;高林;;SMA乙酯化產(chǎn)物的合成及其pH敏感性能的研究[J];應(yīng)用化工;2008年05期
4 陸遙遙;吳季懷;林建明;黃妙良;李兆乾;冷晴;;反應(yīng)條件對(duì)海藻酸鈉/聚N-異丙基丙烯酰胺水凝膠溫度及pH敏感性能的影響研究[J];材料導(dǎo)報(bào);2010年10期
5 李波;滕大勇;王鄉(xiāng);李朝興;;聚(3-丙烯酰胺基苯硼酸-N,N-二甲基丙烯酰胺-丙烯酰胺)凝膠的合成和糖敏感性能[J];高等學(xué)�;瘜W(xué)學(xué)報(bào);2007年02期
6 林福嚴(yán);付朝英;;低功耗無(wú)線應(yīng)變傳感器的設(shè)計(jì)[J];工礦自動(dòng)化;2012年09期
7 衣衛(wèi)京;陶肖明;王廣峰;王楊勇;;織物應(yīng)變傳感器的性能指標(biāo)及評(píng)價(jià)方法(英文)[J];西安工程大學(xué)學(xué)報(bào);2009年02期
8 劉金貴;;能精確測(cè)量的應(yīng)變傳感器[J];上海金屬.有色分冊(cè);1987年02期
9 ;碳纖維搭接式應(yīng)變傳感器[J];高科技纖維與應(yīng)用;2010年06期
10 湯宇;王tq;李朝興;;新型含苯硼酸基團(tuán)的兩親性共聚物微球的制備及其糖敏感性能[J];高等學(xué)�;瘜W(xué)學(xué)報(bào);2007年08期
相關(guān)會(huì)議論文 前10條
1 張穎;胡煒;李紅;;多重敏感性能復(fù)合微凝膠制備與性能研究[A];中國(guó)化學(xué)會(huì)第十二屆膠體與界面化學(xué)會(huì)議論文摘要集[C];2009年
2 張穎;王偉;呂美麗;;多重敏感性復(fù)合微球制備及性能研究[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第13分會(huì)場(chǎng)摘要集[C];2010年
3 張揚(yáng);畢紅;;ST/2VP/DM三元共聚物的合成及其pH敏感性能研究[A];第六屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(7)[C];2007年
4 徐永君;唐俊武;趙清清;王曉博;;點(diǎn)焊薄片應(yīng)變傳感器的數(shù)值分析與實(shí)驗(yàn)研究[A];2008全國(guó)MTS斷裂測(cè)試研討會(huì)論文集[C];2008年
5 趙印明;劉春紅;陳爽;張大鵬;;可焊接式光纖光柵應(yīng)變傳感器的性能實(shí)驗(yàn)研究[A];第九屆全國(guó)光電技術(shù)學(xué)術(shù)交流會(huì)論文集(下冊(cè))[C];2010年
6 肖會(huì)剛;李惠;歐進(jìn)萍;;濕度和溫度對(duì)水泥基應(yīng)變傳感器性能影響的實(shí)驗(yàn)研究[A];2006年全國(guó)功能材料學(xué)術(shù)年會(huì)專輯[C];2006年
7 王彥昌;葉現(xiàn)樓;;基于光纖光柵應(yīng)變傳感器的大連中心·裕景超高塔樓的塔吊監(jiān)測(cè)試驗(yàn)[A];'2012中國(guó)鋼結(jié)構(gòu)行業(yè)大會(huì)論文集[C];2012年
8 王衛(wèi)鋒;吳源清;徐郁峰;賀志勇;;應(yīng)變傳感器在廣州體育館索力測(cè)試中的應(yīng)用[A];計(jì)算機(jī)在土木工程中的應(yīng)用——第十屆全國(guó)工程設(shè)計(jì)計(jì)算機(jī)應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2000年
9 張曉飛;李喜德;;基于石墨烯網(wǎng)狀結(jié)構(gòu)的柔性應(yīng)變傳感器及其性能研究[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
10 孫麗;岳川云;馮燕忠;陳博文;;兩種表面粘貼式光纖光柵應(yīng)變傳感器性能比較[A];第八屆沈陽(yáng)科學(xué)學(xué)術(shù)年會(huì)論文集[C];2011年
相關(guān)重要報(bào)紙文章 前2條
1 李明;光纖光柵應(yīng)變傳感器標(biāo)校系統(tǒng)通過驗(yàn)收[N];中國(guó)船舶報(bào);2012年
2 通訊員 孟兆熙 記者 馮國(guó)梧;天大教授發(fā)現(xiàn)高靈敏度應(yīng)變測(cè)量技術(shù)[N];科技日?qǐng)?bào);2008年
相關(guān)博士學(xué)位論文 前10條
1 段成麗;大應(yīng)變傳感器的設(shè)計(jì)、制備及特性研究[D];電子科技大學(xué);2014年
2 廖新勤;低維材料應(yīng)力/應(yīng)變傳感器的構(gòu)建與性能研究[D];北京科技大學(xué);2017年
3 萬(wàn)玉芹;靜電紡絲過程行為及振動(dòng)靜電紡絲技術(shù)研究[D];東華大學(xué);2006年
4 李林昊;基于蠶絲蛋白靜電紡絲復(fù)合納米纖維的構(gòu)建及其相關(guān)應(yīng)用研究[D];重慶大學(xué);2015年
5 李好義;熔體微分靜電紡絲原理、方法與設(shè)備[D];北京化工大學(xué);2014年
6 魏少紅;靜電紡絲可控制備氧化鋅基納米纖維及其氣敏特性研究[D];東華大學(xué);2012年
7 趙義俠;實(shí)心針靜電紡納米纖維成型機(jī)理及雙尺度納米纖維復(fù)合過濾材料的研究[D];天津工業(yè)大學(xué);2016年
8 陳柔羲;新型氣泡靜電紡絲技術(shù)及自清潔納米纖維膜的制備[D];蘇州大學(xué);2016年
9 于文生;光功能稀土納米結(jié)構(gòu)材料的構(gòu)筑與表征[D];長(zhǎng)春理工大學(xué);2015年
10 羅國(guó)希;基于近場(chǎng)靜電紡絲的聚合物微納米結(jié)構(gòu)制備及其應(yīng)用關(guān)鍵技術(shù)研究[D];重慶大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 王寧;基于電紡纖維網(wǎng)絡(luò)構(gòu)筑的導(dǎo)電高分子復(fù)合材料及其應(yīng)變敏感性能研究[D];鄭州大學(xué);2017年
2 魏謙;應(yīng)用在建筑工程中的基于光纖傳感技術(shù)的應(yīng)變傳感器研究[D];山東建筑大學(xué);2015年
3 王彥君;高溫光纖微腔應(yīng)變傳感器的應(yīng)用及其復(fù)用研究[D];電子科技大學(xué);2014年
4 崔曉蕾;基于光纖光柵應(yīng)變傳感器的管道腐蝕監(jiān)測(cè)研究[D];大連理工大學(xué);2015年
5 李寧;一種太陽(yáng)翼振動(dòng)應(yīng)變傳感器的設(shè)計(jì)、分析與試驗(yàn)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2013年
6 楊會(huì)芹;光纖琺珀應(yīng)變傳感器的性能分析及其復(fù)用研究[D];電子科技大學(xué);2015年
7 戴顯著;工具式應(yīng)變傳感器在橋梁檢測(cè)中的應(yīng)用研究[D];重慶交通大學(xué);2015年
8 阮炳權(quán);提高硅應(yīng)變傳感器可靠性方法研究[D];華南理工大學(xué);2015年
9 劉奪;滑坡監(jiān)測(cè)預(yù)警光纖應(yīng)變傳感器的研制[D];吉林大學(xué);2016年
10 楊燦燦;基于柔性微電極陣列的人工皮膚關(guān)鍵技術(shù)研究[D];南昌航空大學(xué);2016年
,本文編號(hào):2162535
本文鏈接:http://www.lk138.cn/kejilunwen/cailiaohuaxuelunwen/2162535.html