芯材的表面處理對(duì)復(fù)合材料夾芯板力學(xué)性能的影響
本文選題:復(fù)合材料泡沫夾芯板 + 表面處理; 參考:《武漢理工大學(xué)》2015年碩士論文
【摘要】:復(fù)合材料泡沫夾芯板不僅具備比強(qiáng)度高、比模量大、抗沖擊性能強(qiáng)等良好的力學(xué)特點(diǎn),而且具有隔熱、隔音、減振等功能特點(diǎn),因此,在航空、航天、船舶、能源、交通等領(lǐng)域日益受到關(guān)注。為了滿足各領(lǐng)域越來越高的工況要求,提高芯材的力學(xué)性能成為提高夾芯板整體性能的重要方式之一。將泡沫平板表面處理,即在泡沫表面切割出不同尺寸及分布的切縫,產(chǎn)生的芯材在夾芯板成型后因切縫中的樹脂而使力學(xué)性能獲得提高。目前,經(jīng)表面處理的芯板應(yīng)用面越來越廣,但芯材表面處理方式對(duì)夾芯板力學(xué)性能的影響的相關(guān)研究還較少見。本文提出表面處理芯材夾芯板的二步結(jié)構(gòu)分析法。第一步,以薄片模型為理論模型,結(jié)合ANSYS有限元軟件對(duì)含樹脂的芯材的力學(xué)性能進(jìn)行預(yù)測(cè);第二步將芯材看作兩層(樹脂增強(qiáng)芯材子層1和純PVC芯材子層2,某些處理方式中可不含有純芯材層),計(jì)算整體夾芯板的力學(xué)性能,并通過實(shí)驗(yàn)驗(yàn)證,證實(shí)了該方法的有效性。為進(jìn)一步優(yōu)化設(shè)計(jì),考察了切縫深度、寬度、間距及分布對(duì)復(fù)合材料夾芯板的彎曲、平拉、平壓等力學(xué)性能的影響。實(shí)驗(yàn)中,利用真空灌注VARI(Vacuum Assisted Resin Infusion)成型工藝制備了含不同表面處理方式的芯材的復(fù)合材料夾芯板,測(cè)定夾芯板試樣的彎曲、平拉、平壓性能,根據(jù)測(cè)試結(jié)果分析芯材表面處理方式對(duì)夾芯板力學(xué)性能的影響。主要研究?jī)?nèi)容和結(jié)論如下:(1)以從單向單面切割板ODC(One Directional Coutour)為例,提取芯材子層1的代表性體積單元(單胞),分別用薄片模型理論和ANSYS模擬計(jì)算芯材子層1的等效拉伸模量、剪切模量等基本力學(xué)參數(shù),結(jié)果對(duì)比分析表明:通過數(shù)值模擬計(jì)算單胞的力學(xué)性能預(yù)測(cè)芯材的等效力學(xué)性能的方法是合理的;(2)選取芯材多種表面處理方式的代表性尺寸,分別從經(jīng)表面處理的芯板中提取單胞,利用ANSYS計(jì)算芯材的力學(xué)性能。結(jié)果表明,芯材經(jīng)過表面處理后,力學(xué)性能得到提高;(3)根據(jù)國標(biāo)試驗(yàn)分別模擬計(jì)算和測(cè)定夾芯板試樣的彎曲、平拉、平壓性能,模擬結(jié)果與實(shí)驗(yàn)結(jié)果符合較好,說明數(shù)值模擬方法是可靠的。所以,首先通過數(shù)值預(yù)測(cè)樹脂增強(qiáng)芯材的力學(xué)性能,再將含樹脂的芯材作為復(fù)合材料多層結(jié)構(gòu)中的一層進(jìn)行整體夾芯板的力學(xué)分析的方法是合理可行的;(4)為了優(yōu)化設(shè)計(jì),模擬分析了不同的表面處理方式對(duì)夾芯板的力學(xué)性能的影響。結(jié)果表明,對(duì)于本文研究的夾心結(jié)構(gòu),切縫深度和切縫間距對(duì)夾芯板的剛度影響較大,對(duì)平拉和平壓強(qiáng)度影響較低;切縫寬度可顯著提高夾芯板的平拉和平壓強(qiáng)度,對(duì)夾芯板剛度無影響;組合型表面處理能夠提高夾芯板的剛度、平拉和平壓強(qiáng)度。
[Abstract]:Composite foam sandwich panels not only have good mechanical characteristics, such as high specific strength, high specific modulus, strong impact resistance and so on, but also have the functions of heat insulation, sound insulation, vibration absorption and so on. Therefore, in aviation, aerospace, ship, energy, etc. Traffic and other fields are getting more and more attention. In order to meet the requirements of higher and higher working conditions in various fields, improving the mechanical properties of core materials has become one of the important ways to improve the overall performance of sandwich panels. The surface of foam plate was treated by cutting out different size and distribution of slits on the foam surface, and the mechanical properties of the core material were improved because of the resin in the cutting joint after the core was formed. At present, the surface treatment of core panels is more and more widely used, but the influence of core surface treatment on the mechanical properties of sandwich panels is rare. In this paper, a two-step structure analysis method for surface treatment core sandwich panel is presented. The first step is to predict the mechanical properties of the core material containing resin by using the thin sheet model as the theoretical model and the ANSYS finite element software. In the second step, the core material is regarded as two layers (resin reinforced core material sub-layer 1 and pure PVC core material sub-layer 2), some treatment methods can not contain pure core material layer, the mechanical properties of the whole sandwich panel are calculated, and the validity of the method is verified by experiments. In order to further optimize the design, the effects of depth, width, spacing and distribution of cutting joint on the mechanical properties of composite sandwich panels, such as bending, flat drawing and flat compression, were investigated. In the experiment, the composite sandwich panels with different surface treatment methods were prepared by vacuum perfusion VARI(Vacuum Assisted Resin Infusion) molding process. The bending, flat drawing and flat compression properties of sandwich plate samples were measured. According to the test results, the effect of core surface treatment on the mechanical properties of sandwich panel is analyzed. The main contents and conclusions are as follows: (1) taking the unidirectional cutting plate ODC(One Directional Coutouras as an example, the representative volume unit of the core sublayer 1 (unit cell model theory and ANSYS simulation is used to calculate the equivalent tensile modulus of the core sublayer 1, respectively. Comparing and analyzing the basic mechanical parameters such as shear modulus, the results show that the method of predicting the equivalent mechanical properties of the core material by numerical simulation is a reasonable one) and the representative size of various surface treatment methods of the core material is selected. The unit cells were extracted from the surface treated core and the mechanical properties of the core were calculated by ANSYS. The results show that after surface treatment, the mechanical properties of the core material are improved. According to the national standard test, the bending, flat drawing and flat compression properties of the sandwich plate samples are calculated and measured respectively. The simulation results are in good agreement with the experimental results. It is shown that the numerical simulation method is reliable. Therefore, it is reasonable and feasible to analyze the mechanical properties of composite sandwich panel by numerical prediction of the mechanical properties of resin reinforced core material, and then to optimize the design by using the resin core material as a layer of composite multilayer structure. The effects of different surface treatments on the mechanical properties of sandwich panels were simulated and analyzed. The results show that, for the sandwich structure studied in this paper, the stiffness of sandwich panel is greatly affected by the depth of cutting joint and the spacing of cutting joint, and the influence on the flat tension and compression strength is low, and the width of cutting joint can significantly improve the flat tension and compression strength of sandwich panel. The composite surface treatment can improve the stiffness of sandwich panel, and the flat tension and compression strength can be improved.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB33
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 謝序勤;邱堅(jiān);李君;;功能型改性劑對(duì)輕木性能的影響[J];西南林業(yè)大學(xué)學(xué)報(bào);2014年03期
2 王夢(mèng)遠(yuǎn);曹海建;錢坤;袁守忍;;三維機(jī)織夾芯復(fù)合材料的制備與壓縮性能研究[J];材料導(dǎo)報(bào);2013年S1期
3 馮波;王曉潔;惠雪梅;;復(fù)合材料z-pin增強(qiáng)技術(shù)研究現(xiàn)狀[J];玻璃鋼/復(fù)合材料;2012年02期
4 吳林志;熊健;馬力;王兵;張國旗;楊金水;;新型復(fù)合材料點(diǎn)陣結(jié)構(gòu)的研究進(jìn)展[J];力學(xué)進(jìn)展;2012年01期
5 王曉旭;陳利;;復(fù)合材料Z-pin的壓縮試驗(yàn)研究[J];航空材料學(xué)報(bào);2011年04期
6 吳存利;段世慧;李新祥;;復(fù)合材料波紋板剪切載荷作用下的屈曲試驗(yàn)與分析[J];航空學(xué)報(bào);2011年08期
7 朱波;周叮;劉偉慶;;樹脂柱對(duì)復(fù)合材料夾層板屈曲及動(dòng)力學(xué)性能的影響分析[J];振動(dòng)與沖擊;2011年04期
8 孫衛(wèi)東;朱清;;玻璃鋼游艇艇體成型真空芯材導(dǎo)流工藝實(shí)施與應(yīng)用研究[J];交通節(jié)能與環(huán)保;2011年01期
9 李朝光;矯桂瓊;黃濤;杜龍;李俊;;Z向增強(qiáng)復(fù)合材料層壓板沖擊后壓縮性能試驗(yàn)研究[J];機(jī)械強(qiáng)度;2010年03期
10 陳錫棟;楊婕;趙曉棟;范細(xì)秋;;有限元法的發(fā)展現(xiàn)狀及應(yīng)用[J];中國制造業(yè)信息化;2010年11期
相關(guān)博士學(xué)位論文 前2條
1 王燦;泡沫夾芯復(fù)合材料界面破壞行為及增韌研究[D];大連理工大學(xué);2012年
2 王世勛;復(fù)合材料夾芯結(jié)構(gòu)的力學(xué)性能[D];哈爾濱工業(yè)大學(xué);2010年
,本文編號(hào):1844716
本文鏈接:http://www.lk138.cn/kejilunwen/cailiaohuaxuelunwen/1844716.html