中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁(yè) > 科技論文 > 材料論文 >

二維材料層堆疊異質(zhì)結(jié)的第一性原理研究

發(fā)布時(shí)間:2018-05-03 12:01

  本文選題:第一性原理 + 異質(zhì)結(jié); 參考:《西安電子科技大學(xué)》2015年碩士論文


【摘要】:自從石墨烯出現(xiàn)以后證明二維材料可以在常溫下穩(wěn)定存在,二維材料的研究迅速擴(kuò)展開(kāi)來(lái)。隨著研究的不斷深入,人們發(fā)現(xiàn)堆疊兩種二維材料形成異質(zhì)結(jié)可以呈現(xiàn)出一些新穎的特性,而且由于二維材料層間是靠微弱的范德華力結(jié)合而成,不需要考慮如體材料異質(zhì)結(jié)一樣因?yàn)榫Ц癫黄ヅ湓斐傻南拗?這樣大大促進(jìn)了二維材料異質(zhì)結(jié)的研究。本文借助模擬軟件Material Studio,對(duì)TMDs-MoS_2異質(zhì)結(jié)和Graphene-TMDs異質(zhì)結(jié)兩類(lèi)異質(zhì)結(jié)進(jìn)行模擬計(jì)算,研究其內(nèi)部結(jié)構(gòu)、能帶結(jié)構(gòu)、光學(xué)性質(zhì)等,所取得的研究成果如下:1.首先對(duì)WSe_2-MoS_2異質(zhì)結(jié)的超胞的晶格參數(shù)、能帶結(jié)構(gòu)、態(tài)密度、電子布局和差分電荷密度。能帶結(jié)構(gòu)和態(tài)密度的計(jì)算結(jié)果顯示,WSe_2-MoS_2異質(zhì)結(jié)具有直接帶隙能帶結(jié)構(gòu),禁帶寬度為0.441eV。其值均小于WSe_2和MoS_2的禁帶寬度,意味著若將該結(jié)構(gòu)用于太陽(yáng)電池或光電探測(cè)器,可以增強(qiáng)相關(guān)器件對(duì)長(zhǎng)波長(zhǎng)光子的吸收與響應(yīng)。電子布局和差分電荷密度的計(jì)算結(jié)果表明,異質(zhì)結(jié)構(gòu)成后可使WSe_2分子層荷正電,MoS_2分子層荷負(fù)電,由此形成由WSe_2層指向MoS_2層的內(nèi)建電場(chǎng),該內(nèi)建電場(chǎng)的形成有助于實(shí)現(xiàn)光生電子-空穴對(duì)的分離。計(jì)算結(jié)果分析說(shuō)明WSe_2-MoS_2異質(zhì)結(jié)非常適合被用來(lái)制作需要對(duì)長(zhǎng)波長(zhǎng)光子吸收與響應(yīng)的太陽(yáng)電池和光電探測(cè)器等光電子器件。2.分析了三種不同堆疊方式對(duì)WSe_2-MoS_2異質(zhì)結(jié)的影響。能帶結(jié)構(gòu)計(jì)算結(jié)果顯示,三種WSe_2-MoS_2異質(zhì)結(jié)都具有直接帶隙能帶結(jié)構(gòu),禁帶寬度分別為0.441eV、0.859eV、0.522eV。這就意味著通過(guò)不同方式的堆疊,可以用來(lái)調(diào)控該類(lèi)異質(zhì)結(jié)合適的禁帶寬度,從而拓寬此類(lèi)異質(zhì)結(jié)的應(yīng)用范圍。通過(guò)形成能的計(jì)算表明,三種結(jié)構(gòu)形成能都為負(fù)值,而且相差很小,說(shuō)明三種結(jié)構(gòu)都容易形成,在分析實(shí)際實(shí)驗(yàn)時(shí),必須同時(shí)考慮三種結(jié)構(gòu)共同存在的情況。光學(xué)性質(zhì)的計(jì)算結(jié)果可知,由于禁帶寬度的差別結(jié)構(gòu)2的吸收系數(shù)、光電導(dǎo)在中長(zhǎng)波范圍內(nèi)比結(jié)構(gòu)1和結(jié)構(gòu)3都要好;吸收邊普遍左移,這有利于異質(zhì)結(jié)對(duì)紅外波段的長(zhǎng)波的吸收。對(duì)MoSe_2-MoS_2異質(zhì)結(jié)和WS_2-MoS_2異質(zhì)結(jié)的計(jì)算顯示,兩種異質(zhì)結(jié)都為直接帶隙,禁帶寬帶分別為0.780eV和1.389eV。吸收譜的比較發(fā)現(xiàn)MoSe_2-MoS_2異質(zhì)結(jié)在高頻范圍內(nèi)有著很強(qiáng)的吸收,可以應(yīng)用到對(duì)紫外、深紫外探測(cè)器的研究。3.最后,我們對(duì)Graphene-TMDs異質(zhì)結(jié)進(jìn)行計(jì)算研究,發(fā)現(xiàn)graphene-MoS_2異質(zhì)結(jié)按照第二種方式堆疊能打開(kāi)石墨烯能隙,兩種結(jié)構(gòu)主要差別在于S原子對(duì)石墨烯層中C原子雜化的程度的情況不同。形成能的計(jì)算顯示兩種結(jié)構(gòu)都較容易形成。Graphene-WS_2異質(zhì)結(jié)的兩種方式使得石墨烯有著17meV和49meV帶隙的打開(kāi),這就意味著可以通過(guò)利用石墨烯與WS_2的堆疊來(lái)控制石墨烯的能帶,從而有利于石墨烯的開(kāi)關(guān)器件中的應(yīng)用。Graphene-WSe_2異質(zhì)結(jié)的兩種堆疊方式都為零帶隙,并沒(méi)有使得石墨烯能隙的打開(kāi)。造成這種差別的原因在于導(dǎo)帶低和價(jià)帶頂Mo原子和W原子貢獻(xiàn)相同,主要差別來(lái)自S原子和Se原子的不同貢獻(xiàn)。光學(xué)性質(zhì)研究發(fā)現(xiàn),此類(lèi)異質(zhì)結(jié)拓寬了單一材料對(duì)光的吸收頻譜,而且發(fā)現(xiàn)Graphene-MoS_2異質(zhì)結(jié)與另兩種異質(zhì)結(jié)對(duì)高頻高能光子的吸收范圍有所不同。這樣通過(guò)利用這些特性使得此類(lèi)異質(zhì)結(jié)更加有利于應(yīng)用到光電子領(lǐng)域。
[Abstract]:Since the appearance of graphene has proved that the two-dimensional material can be stable at normal temperature, the study of two-dimensional materials has expanded rapidly. With the development of the research, it is found that stacking of two kinds of two-dimensional materials can present some novel properties, and the two dimension material is combined with weak van Edward force. It does not need to consider the restriction caused by the lattice mismatch, such as the bulk material heterojunction, which greatly promotes the study of the two-dimensional heterojunction. In this paper, the simulation software Material Studio is used to simulate two types of heterojunction, TMDs-MoS_2 heterojunction and Graphene-TMDs heterojunction, to study the internal structure, band structure and optics. The results obtained are as follows: 1. first, the lattice parameters of the supercell of the WSe_2-MoS_2 heterojunction, the band structure, the state density, the electron distribution and the differential charge density. The results of the band structure and the density of states show that the WSe_2-MoS_2 heterojunction has a direct band gap structure and the band gap of 0.441eV. is less than WSe_2 and Mo. The band gap of S_2 means that if the structure is used in solar cells or photodetectors, the absorption and response of the related devices to Nagawa Nagahikaruko can be enhanced. The results of the electronic layout and differential charge density show that the WSe_2 molecular layer can be charged positively and the MoS_2 molecular layer is charged, thus forming the WSe_2 layer to Mo. The internal electric field of the S_2 layer, the formation of the built electric field helps to realize the separation of the photoelectron hole pair. The calculation results show that the WSe_2-MoS_2 heterojunction is very suitable for making.2. analysis of three different stacking modes for the photoelectron devices, such as the solar cells and photodetectors, which need to absorb and respond to the WSe_2-. The effect of MoS_2 heterostructure. The results of band structure calculation show that the three WSe_2-MoS_2 heterostructures have direct band gap band structure, and the band gap is 0.441eV, 0.859eV, 0.522eV., which means that the different ways of stacking can be used to regulate the appropriate band gap of this kind of heterojunction, thus widening the application model of such heterojunction. The calculation of the formation energy shows that the formation energy of the three structures is negative, and the difference is very small, indicating that the three structures are easy to form. In the analysis of the actual experiment, the common existence of the three structures must be considered simultaneously. The long wave range is better than the structure 1 and the structure 3; the absorption edge is generally left shift, which is beneficial to the absorption of the long wave in the infrared band of the heterojunction. For the MoSe_2-MoS_2 heterojunction and the WS_2-MoS_2 heterojunction, the two heterostructures are all direct bandgap, and the band gap is compared to the 0.780eV and 1.389eV. absorption spectra, respectively. The junction has very strong absorption in the high frequency range, and can be applied to the study of UV, deep ultraviolet detector.3.. We have calculated the Graphene-TMDs heterojunction. It is found that the graphene-MoS_2 heterojunction can open the energy gap of the graphene by stacking in second ways. The main difference of the two structure is that the S atom has the C atom in the graphene layer. The formation energy is different. The calculation of the formation energy shows that the two structures are easier to form two ways of.Graphene-WS_2 heterojunction, which makes the 17meV and 49meV band gap open, which means that the energy band of graphene can be controlled by using the stacking of graphene and WS_2, thus it is beneficial to the switching devices of graphene. The two stacking methods used in the.Graphene-WSe_2 heterojunction are zero band gaps, and the energy gap is not opened. The reason for this difference is that the lead band is low and the valence band top Mo and W atoms contribute the same, the main difference is from the different contributions of the S atom and the Se atom. The absorption spectrum of light by a single material and the difference between the absorption range of the Graphene-MoS_2 heterojunction and the other two heterostructures for high frequency and high energy photons are found. By using these properties, this kind of heterojunction will be more beneficial to the application of the photoelectron field.

【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TB30

【參考文獻(xiàn)】

相關(guān)期刊論文 前3條

1 Xin Tong;Eric Ashalley;Feng Lin;Handong Li;Zhiming M.Wang;;Advances in MoS_2-Based Field Effect Transistors(FETs)[J];Nano-Micro Letters;2015年03期

2 黃桂榮;陳建;;石墨烯的合成與應(yīng)用[J];炭素技術(shù);2009年01期

3 曹鈺華;崔樹(shù)茂;劉軻;楊志懋;;單原子層二維碳片的獨(dú)特性質(zhì)與應(yīng)用前景展望[J];材料導(dǎo)報(bào);2008年01期



本文編號(hào):1838407

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/kejilunwen/cailiaohuaxuelunwen/1838407.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶4ac7c***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com