Web服務(wù)組合關(guān)鍵機制
[Abstract]:On the Internet, more and more network resources, including storage resources, computing resources, application resources and software resources, can be acquired and accessed, so that the Internet is gradually becoming an open distributed computing platform. and the service-oriented computing (SOC) and the service-oriented architecture (SOA) are the latest development directions of the current distributed computing and software development, can help enterprises or Internet users to develop applications and business processes more flexibly, quickly and at low cost, The combination of Web services is the key technology for service computing. With the development of cloud computing, e-commerce and Internet, the environment of the Web service combination has changed. In order to achieve universality, many QoS-based Web service combination methods are designed for a general-purpose environment, and some new problems and machines in a specific environment are not considered In this paper, the environment of Web service combination is subdivided, and the combination of Web services based on QoS is studied. The emphasis is to improve the traditional method to adapt them to these specific rings. The new method is put forward to make full use of the advantages of these specific environments and to further study the new problems brought by the specific environment, and put forward the corresponding solution The main contents and contribution of this paper are as follows: next:1. Since the Internet is made up of sub-networks with different delays, users at different network locations have the same service quality as the same Web service There is a difference. However, the service provider typically only provides an average of the service QoS as the service's evaluation index, resulting in the fact that most of the current service combining methods do not take into account the network transmission performance and bring the Web services to users at different locations In addition, in the case of limited capacity of Web service processing, multiple physical services are used to satisfy the service request of multiple users, not only can improve the reliability of the combined service and the ability to resist the damage, but also can remarkably reduce the total service of the Web combination service. However, the existing methods in such a case study the dynamic combination of services In this paper, by using the queuing network model, the quantitative index of the network QoS is introduced, the constraint conditions and the upper and lower limits of the optimization variables are given, and a runtime service group is proposed. the method comprises the following steps of: firstly, selecting a group of dominant entity services by using a non-linear optimization theory, The experiment shows that the method proposed in this paper is suitable for the dynamic change of the parameters in terms of the optimality and the efficiency of the implementation. 2. The previous research approach focuses on the study of atomic Web services or cluster services in terms of energy efficiency, while ignoring the entire portfolio In this paper, the energy consumption of the whole combined service is calculated according to the energy consumption model of the Web candidate service. The method provides three optimization objectives, and the first optimization goal is to perform time fast: the combination method of energy consumption perception cannot be improved with a large reduction in execution time The second optimization goal is high reliability: some of the atomic services in the combined service may have a lower service rate, but the reliability is high, so this type of atomic service also has the advantage that they are combined to lead to higher Overall reliability. The third optimization goal is low energy consumption: the M/ M/ c model used in this paper is closer to the actual situation and can reduce the combined service more by selecting the service according to the energy consumption model In order to speed up the speed of the solution, the hybrid algorithm is used to calculate the maximum energy consumption. At last, the energy-saving efficiency test of service is carried out under different service scale (the number of abstract service and the number of candidate service). The result shows that the method can reduce the combination greatly on the premise of satisfying the service request. the energy consumption of service.3. In the Internet environment, the combination of Web services has two kinds of uncertainty, one is the uncertainty of service call results, and the other is Q The uncertainty of S. The previous study uses the discrete time Markov decision process to model the service combination with uncertainty, and the QoS aggregation value of the service is used as the real-time compensation, and finally the service is obtained. The optimal strategy of the combination. This requires that the probability of transition for each state must be known in advance, but the transfer almost The rate is hard to get. In addition, previous studies have not taken into account the value of the QoS This paper, based on the advantages of the model proposed by the relevant literature, further extends the service combination model, and uses the QoS value with the probability distribution to model the service combination. The method proposed in this paper is obtained by using the machine learning algorithm. The experimental results show that the learning cycle of the method 4. The relationship between the QoS attributes of the service is independent from each other in order to simplify the study, so it is not good to measure the waiting time. The method of this paper takes into account the correlation of the QoS attributes of the service, so the assignment of the QoS weight can be more accurate reflection of the quality of service. In addition, the business capacity of the enterprise has been the highest priority for its development since it has matched the IT level, and SOA is the promotion The key technology of this match. However, if there is no one that can connect to the strategic, tactical, and operational aspects, the advantage of using SOA will be hard to be in the enterprise The business layer of the industry is presented. In view of the above two factors, this paper presents an improved analytic hierarchy process for the combination of services, which combines the decision of the strategic, tactical and operational aspects, taking into account the interdependence of the QoS attributes and the service group. The combined scheme is sorted, where you can select the most appropriate
【學位授予單位】:北京郵電大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TP393.09
【相似文獻】
相關(guān)期刊論文 前10條
1 王曉玲,郭志懋,周傲英;Web服務(wù)組合的基于文法的消息處理[J];計算機學報;2005年04期
2 王勇;張煜;尹瑞;;Web服務(wù)組合中商業(yè)事務(wù)處理的研究[J];小型微型計算機系統(tǒng);2006年01期
3 郭玉彬;杜玉越;奚建清;;Web服務(wù)組合的有色網(wǎng)模型及運算性質(zhì)[J];計算機學報;2006年07期
4 蔣運承;湯庸;;服務(wù)組合的質(zhì)量估計模型[J];小型微型計算機系統(tǒng);2006年08期
5 劉必欣;周斌;賈焰;;Web服務(wù)組合支撐平臺StarService Flow的研究與實現(xiàn)[J];計算機工程與科學;2006年12期
6 陳紅;;基于參考網(wǎng)的Web服務(wù)組合模型[J];計算機應(yīng)用;2006年12期
7 單保華;韓燕波;李厚福;胡海濤;;一種驗證業(yè)務(wù)級服務(wù)組合可執(zhí)行能力的方法[J];計算機科學;2006年03期
8 廖志軍;高春鳴;;基于π演算的異構(gòu)Web服務(wù)組合的互操作[J];中國科技信息;2007年06期
9 周宇;張鵬程;李必信;;一種Web服務(wù)組合的數(shù)學模型[J];東南大學學報(自然科學版);2007年04期
10 王國法;孫曉亭;王昆;;Web服務(wù)組合中的服務(wù)選擇研究[J];計算機與信息技術(shù);2007年06期
相關(guān)會議論文 前10條
1 段友祥;相鵬;;Web服務(wù)組合引擎的研究與實現(xiàn)[A];第二十三屆中國數(shù)據(jù)庫學術(shù)會議論文集(研究報告篇)[C];2006年
2 吳亮;袁兆山;;基于模糊Petri網(wǎng)的語義Web服務(wù)組合[A];全國第20屆計算機技術(shù)與應(yīng)用學術(shù)會議(CACIS·2009)暨全國第1屆安全關(guān)鍵技術(shù)與應(yīng)用學術(shù)會議論文集(上冊)[C];2009年
3 趙慧杰;;Web服務(wù)的組合計劃與優(yōu)化[A];2007年中國智能自動化會議論文集[C];2007年
4 張玉軍;李心科;;面向自然語言描述的Web服務(wù)組合[A];2011中國儀器儀表與測控技術(shù)大會論文集[C];2011年
5 周相兵;馬洪江;楊興江;;一種基于云計算的語義Web服務(wù)組合模型研究[A];2009年全國開放式分布與并行計算機學術(shù)會議論文集(上冊)[C];2009年
6 付曉東;鄒平;;基于元流程的Web服務(wù)組合例外處理模型[A];第二十六屆中國控制會議論文集[C];2007年
7 江琦;奚宏生;殷保群;;網(wǎng)絡(luò)新媒體服務(wù)系統(tǒng)事件驅(qū)動的動態(tài)服務(wù)組合[A];第二十九屆中國控制會議論文集[C];2010年
8 徐明迪;趙恒;張煥國;;面向可靠性的動態(tài)Web服務(wù)組合選擇策略研究[A];CCF NCSC 2011——第二屆中國計算機學會服務(wù)計算學術(shù)會議論文集[C];2011年
9 周獻中;吳奎;蕭毅鴻;;基于蟻群算法的Web服務(wù)自動組合[A];決策科學與評價——中國系統(tǒng)工程學會決策科學專業(yè)委員會第八屆學術(shù)年會論文集[C];2009年
10 徐其興;余鎮(zhèn)危;;一種基于移動Agent的服務(wù)組合模型[A];2006年全國開放式分布與并行計算學術(shù)會議論文集(二)[C];2006年
相關(guān)重要報紙文章 前5條
1 本報記者 張茜 通訊員 孟慶超;打好服務(wù)組合拳助力民企大發(fā)展[N];萊蕪日報;2014年
2 記者 俞永均 通訊員 方平原 王芬;外經(jīng)貿(mào)部門打出金融服務(wù)組合拳[N];寧波日報;2012年
3 高智 本報記者 王彤;許昌保險業(yè):亮出服務(wù)組合拳[N];中國保險報;2014年
4 沈建苗 編譯;利用現(xiàn)有服務(wù)構(gòu)建SOA應(yīng)用[N];計算機世界;2006年
5 記者 蕭雨林 通訊員 張興漢 郭畢;打好服務(wù)組合拳 提質(zhì)增效站排頭[N];襄陽日報;2014年
相關(guān)博士學位論文 前10條
1 馮名正;Web服務(wù)組合關(guān)鍵技術(shù)研究[D];東南大學;2006年
2 何豐;語義Web服務(wù)組合若干關(guān)鍵技術(shù)研究[D];東華大學;2008年
3 周濤;基于策略的服務(wù)組合關(guān)鍵技術(shù)研究及應(yīng)用[D];浙江大學;2012年
4 吳鐘;面向多邊協(xié)同的Web服務(wù)組合市場決策與優(yōu)化管理研究[D];武漢理工大學;2013年
5 胡佳;語義Web服務(wù)自動組合及驗證的研究[D];天津大學;2010年
6 馬小寧;鐵路信息共享的Web服務(wù)組合關(guān)鍵技術(shù)研究[D];北京交通大學;2010年
7 包力;Web服務(wù)組合形式化建模與驗證研究[D];大連海事大學;2009年
8 劉莉平;動態(tài)Web服務(wù)組合關(guān)鍵技術(shù)研究[D];中南大學;2011年
9 龍軍;基于信任感知與演化的服務(wù)組合關(guān)鍵技術(shù)研究[D];中南大學;2011年
10 張楊;語義Web服務(wù)組合的可信性度量研究[D];重慶大學;2011年
相關(guān)碩士學位論文 前10條
1 劉磊;Web服務(wù)組合的性質(zhì)檢驗與實現(xiàn)[D];電子科技大學;2009年
2 史斌;對等模式下個性化Web服務(wù)組合和匹配算法研究[D];山東大學;2009年
3 陳陽;Web服務(wù)組合模型及相關(guān)技術(shù)的研究[D];哈爾濱工程大學;2008年
4 周真建;語義Web服務(wù)組合的挖掘[D];南昌大學;2009年
5 魏守賢;動態(tài)服務(wù)組合在社區(qū)服務(wù)平臺中的研究與應(yīng)用[D];浙江工商大學;2011年
6 朱嘉魯;基于移動Agent的Web服務(wù)組合[D];中國科學院研究生院(成都計算機應(yīng)用研究所);2006年
7 褚娟;Web服務(wù)組合的全局約束分析[D];山東大學;2007年
8 宋馳;基于用戶偏好的啟發(fā)式Web服務(wù)組合的研究與實現(xiàn)[D];北京郵電大學;2008年
9 張健;普適環(huán)境下一種分布式可靠服務(wù)組合機制研究[D];上海交通大學;2010年
10 余洋;Web服務(wù)組合的調(diào)解技術(shù)研究與應(yīng)用[D];解放軍信息工程大學;2011年
,本文編號:2474009
本文鏈接:http://www.lk138.cn/guanlilunwen/ydhl/2474009.html